
Proceedings of the Workshop
on Change of Representation
and Problem Reformulation

MICHAEL R. LOWRY
RECOM TECHNOLOGIES, INC.

AI RESEARCH BRANCH, MAIL STOP 269-2
NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94025, USA

I ’

Iu/\sA Arnes Research Center
Artificial Intelligence Research Branch

Technical Report FIA-92-06

April, 1992

Preface
From the earliest days of AI, scientists have

recognized that the representation of a task
domain is a major factor in the success of
symbolic processing systems. However, current
AI systems are usually limited to the
representations that are hardwired by their
programmers. To develop truly intelligent
systems, AI needs to endow its creations with
the ability to select and even generate their own
representations and problem formulations. This
ability distinguishes human culture from animal
learning: the plethora of languages, formalisms,
and notations we invent to help us solve
problems and enrich our lives.

The pioneering work of Saul Amarel
demonstrated that, in principle, it is possible for
an automated system to change i ts
representation of a task domain; and
furthermore that the payoff in problem solving
performance could be exponential. Studies of
expert problem solving behavior confirm the
importance of the ability to choose good models
and representation’s. Since the mid eighties,
research has greatly expanded in this field of AI.
Various approaches have been developed,
including automatic theory revision; automatic
abstraction, approximation and refinement of
task domains; and transfer of knowledge from
one representational formalism to another.
Prototype systems have been developed in areas
such as automatic planning and programming,
engineering design, analytical reasoning
problems and qualitative physics.

These are the proceedings for the third bi-
annual workshop on change of representation
and problem reformulation. The first workshop
was chaired by Paul Benjamin in June of 1988
and sponsored by Philips Laboratories at
Tarrytown, New York. Paul Benjamin edited a
collection of revised papers from the workshop
and published the book m a n e of
Representation and Inducti ve B I ~ through
Kluwer Academic in 1989. The second
workshop was chaired by Jeffrey Van Baalen in
March of 1990 at Menlo Park, California.
Facilities were provided by Price Waterhouse
Technology Center, with grant money provided
by ACM SIGART. The third workshop was
held at the Asilomar conference center in Pacific
Grove, California in late April of 1992. Grant

money was provided by AAAI and ACM
SIGART.

In contrast to the first two workshops, this
workshop was focused on analytic or
knowledge-based approaches, as opposed to
statistical or empirical approaches called
‘constructive induction’. The organizing
committee believes that there is a potential for
combining analytic and inductive approaches at
a future date. However, it became apparent at
the previous two workshops that the
communit ies pursuing these different
approaches are currently interested in largely
non-overlapping issues. The constructive
induction community has been holding its own
workshops, principally in conjunction with the
machine learning conference. While this
workshop is more focused on analytic
approaches, the organizing committee has made
an effort to include more application domains.
We have greatly expanded from the origins in
the machine learning community. Participants in
this workshop come from the full spectrum of
AI application domains including planning,
qualitative physics, software engineering,
knowledge representation, and machine
learning.

Dr. Michael R. Lowry (Chair)
AI Research Branch
NASA Ames Research Center

Professor Jeffrey Van Baalen
Computer Science Dept.
University of Wyoming

Professor Robert C. Holte
Computer Science Department
University of Ottawa

Dr. Mark Shirley
Xerox Palo Alto Research Center

Professor Christopher H. Tong
Computer Science Dept.
Rutgers University

ii

Workshop Participants

Saul Amarel
Laboratory for Computer Science Research
Hill Center for Mathematical Sciences
Rutgers University
New Brunswick, NJ 08903
amarel@cs.rutgers.edu

Jacky Baltes
2212 Vior ia Crescent NW
Calgary, Alberta
CANADAW 4E3
baltes@cpsc.ucalgary.ca

Tony Barrett
Dep of Comp. Science FR-35
University of Washington
Seattle, WA 981 95
barrett@cs.washington.edu

Kevin Benner
University of Southern California
Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey. CA 902924695
Benner@isi.edu

Thomas Ellman
Lab for Computer Science Research
Hill Center for Math. Sciences
Rutgers University
New BrunswM, NJ 08903
ellman@cs.rutgers.edu

Diana Gordon
Naval Research Laboratory
Code 551 0
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5000
gordon@aic.nrl.navy.mil

John Anderson
Dept of Comp. and Info. Science
University of Oregon
Eugene, OR 97403
phn@cs.uoregon.edu

Ranan Banerji
Dept of Math. and Comp. Science
St. Joseph's University
5600 City Avenue
Philadelphia, PA 19131
rbanerji@sju.edu

Paul Benjamin
Department of Mathematics and Computer Sciencr
St. Joseph's University
5600 City Avenue
Philadelphia, PA 19131
pbenjami@sju.edu

Giuseppe Cerbone
Giuseppe Cerbone
do Oregon State University
Computer Science Department
Cowallis, OR 97331
cerbone@cs.orst.edu

Fausto Giunchiglia
fausto@sail.stanford.edu

Benjamin Grosof
IBM T.J. Watson Research Center
P.O. Box 704
YorMown Heights, NY 10598
grosof@Watson.ibm.com

iii

Robert Helm
Dept of Comp. and Info. Science
University of Oregon
Eugene, OR 97403
bhelm@cs.uoregon.edu

Neil lscoe
EDS Research, Austin Lab
1601 Rio Grande, #451
Austin, Texas 78701
iscoe@austin.eds.com

Craig Knoblock
University of Southern California
Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 902924695
knoblock@ is i . ed u

Alon Levy
Knowledge Systems Laboratory
Department of Computer Science
Stanford University
701 Welch Road, Bldg C.
Palo Alto, California, 94304
alevy@cs.stanford.edu

Zheng-Yang Liu
EDS Research, Austin Lab
1601 RioGrande. #451
Austin, Texas 78701
liu@austin.eds.com

Steve Minton
AI Research Branch
NASA Ames Research Center
Mail Stop 269-2
Moffett Field, CA 94035-1000
Minton@ptolemy.arc.nasa.gov

Robert Holte
Computer Science Department
University of Ottawa Ottawa
Ontario CANADA K1 N 6N5
holte@csi.UOttawa.CA

Rich Keller
AI Research Branch
NASA Ames Research Center
Mail Stop 269-2
Moffett Field, CA 94035-1 000
Keller@ptolemy.arc.nasa.gov

Amy Lansky
AI Research Branch
NASA Ames Research Center
Mail Stop 269-2
Mett Field, CA 94035-1 000
lansky@ptolemy.arc.nasa.gov

Theodore Linden
2245 Tasso Street
Palo Alto, CA 94301
linden@ads.com

Michael Lowry
AI Research Branch
NASA Ames Research Center
Mail Stop 269-2
Moffett Field, CA 94035-1000
lowry@ptolemy .arc.nasa.gov

Armand Prieditis
priediti@cs.ucdavis.edu

iv

Spiridon Reveliotis
785 Broadway #1,
Somerville MA 02144
spyros@nueng.coe.northeastern.edu

Chris Tong
Lab for Computer Science Research
Hill Center for Math. Sciences
Rutgers University
New Brunswick, NJ 08903
ctong@cs.rutgers.edu

Kyriakos Zavoleas
Dept of Industrial Eng. 8 Inform. Sys.
330 Snell Engineering Center
Northeastern University .
360 Huntington Avenue
Boston, MA 021 15
kyriakos@nueng.coe.northe

Josh Tenenberg
Dept of Computer Science
University of Rochester
Rochester, NY 14627-0226
josh@cs.rochester.edu

Jeffrey Van Baalen
Computer Science Department
P.O. Box 3682
University of Wyoming
Laramie, W 82071
jvb@moran.UWyo.Edu

V

Contents

.. Preface .. 11

Workshop Participants i i i

Papers in Order of Author’s Last Name ...

...

I An Integrated Planning Representation using Macros, Abstractions and Cases

Search-Control Heuristics and Abstraction in Least-Commitment Planning

Towards An Effective Theory of Reformulation ..

I Kevin M. Benner .28
Machine Learning Techniques in Optimal Design ..

Reformulation Issues in Numerical Optimization ..

Approximation, Abstraction and Decomposition in Search and Optimization

I Jacky Baltes and Bruce MacDonald ... 1

Anthony Barrett ... 10

D. Paul Benjamin ... 13

I

Specification Reformulation During Specification Validation

I :
I

,
...........................

...

Giuseppe Cerbone37

Giuseppe Cerbone .47

I Thomas Ellman49
Abstraction and problem reformulation ...

Fausto Giunchiglia .. . 5 1
Queries for Bias Testing

Diana F. Gordon .. 53
Reformulating Non-Monotonic Theories For Inference and Updating

Benjamin N. Grosof .. .66
Scare Tactics: Evaluating Problem Decompositions Using Failure Scenarios

B. Robert Helm and Stephen Fickas 85
Learning Impasses in Problem Solving ..

J. P. E. Hodgson94
When doer Changing Representation Improve Problem-Solving Performance?

Robert Holte, Robert Zimmer, and Alan MacDonald l o0
Domain and Specification Modeb for Software Engineering

~ Research Summary ...
I Craig A. Knoblock .. 111

Localization vs. Abstraction: A Comparision of Two Search Reduction Techniques .
Amy L. Lansky .. .112

I Irrelevance in Problem Solving
I Alon Y. Levy .121

Research Summary ...
, Alon Levy 131

...
I

. I

I Neil Isca, Zheng-Yang Liu, and Guohui Feng .. . l o 6

..
I ..

..

Generation and Exploitation of Aggregation Abstractions for Scheduling
and Resource Allocation ..

Theodore A. Linden and Michael R. Lowry133
Symmetry as Bias: Rediscovering Special Relativity

Michael Loury ... ,138

Armand Prieditu and Bhaskar Janakiruman .. .150
Becoming Reactive By Concretization ..

Reformulating Constraints for Compilability and Efaciency
Chris Tong, Wesley Braudaway, Sunil Mohan, and Kerstin Voigt154

The Role of Reformulation in the Automatic Design of Satiflability Procedures
Jeffrey Van Baalen ... 161

Sensor/Data Fusion Research Outline ...
Kyn'akos P. Zavoleas ... 173

Bal t e s

An Integrated Planning Representation c. /

using
Macros, Abstractions, and Cases

Jacky Baltes and Bruce MacDonald
2500 University Drive NW

Calgary, Alberta T2N 1N4, Canada
{ bal t es , bruce } Ocpsc . ucalg ary. ca

Abstract
Planning will be an essential part of future au-
tonomous robots and integrated intelligent aye
terns. This paper focuses on learning problem
solving knowledge in planning systems. The sys-
tem is based on a common representation for
macros, abstractions, and cases. Therefore, it is
able to exploit both classical and casebased tech-
niques. The general operators in a successful plan
derivation would be assessed for their potential
usefulness, and some stored. The feasibility of this
approach was studied through the implementation
of a learning system for abstraction. New macrw
are motivated by trying to improve the operator-
set. One heuristic used to improve the operator-
set is generating operators with more general p r e
conditions than existing ones. This heuristic le&
naturally to abstraction hierarchies. This investi-
gation showed promising results on the towers of
Hanoi problem. The paper concludes by describ-
ing methods for learning other problem solving
knowledge. This knowledge can be represented by
allowing operators at different levels of abstraction
in a refinement.

Introduction
This paper advocates a common representation for o p
erators that includes abstract plans, canes and macroa
[Baltes, 19911. An i m p o r t a t aspect of this represen-
tation is that a system should be able to learn the
necessary problem solving knowledge.

The implementation of a prototype system that
learns abstraction hierarchies is described. The learn-
ing system tries to improve the operator-set by ex-
tracting macroa with more general preconditions than
existing ones. This leads naturally to the generation
of abstraction hierarchies. Rather than searching for
new macros explicitly, the learner extracts new macroa
from a successful plan. It tries to find operators that
result in identical states and that differ in exactly one
precondition predicate. If such operators are found,
the system deletes the differing predicate from the p r e

conditions, thus forming an abstract operator. Since
the planning system t intended to support case-based
planning techniques, a generalized and an instantiated
version of the macro ie stored. We intend to use a novel
dynamic filtering scheme [Baltes, 1991) to delete poor
macros.

The learning system was tested on the towers of
Hanoi problem and showed promising results. The re-
mainder of the paper is organized as follows: first, the
paper presents a common representation for planners,
then reviews previous work on operator learning with
macros. Section explains how operators are learned
in our representation. Then, a description of the im-
plementation .and an example are given. The paper
concludes by describing how we intend to learn other
problem solving knowledge such as reactive rules or
anticipation of failure.

Macro-Operators
A linear macro is a sequence of primitive o g
erators. This sequence is usually generalized
and added to the operator set as a new o p
erator. For example, useful macroa in the
blocks world domain are pickup=(goto ,grasp) and
putdom=(goto,ungraap). Macros can be used
in the construction of new macroe, for example
mova=(pickup,putdom).

This paper focuses on linear macrw because the for-
mation of iterative or disjunctive macros depends on
good linear ones [Shell and Carbonnel, 19891. Macros
speed up the planning process because they reduce the
solution length. On the other hand, the generation
of macros must be carefully controlled because new
operatora increase the branching factor of the search
space. Minton showed that simply generating all PO%
sible macroa from a successful solution decreases per-
formance (Minton, 19851.

Dynamic Filters
As mentioned above, only a small number should be
generated, ideally ones that will be useful in future
problem solving tasks, The basic problem of macro
learning is that the system has to predict the useful-

1

ness of a macro based on its previous experience. The
following paragraphs describe the effect of adding one
macro to the operator set and derive a usefvlncss me&
sure for such an addition. This measure can be used
to dynamically delete macros.

By adding a macro m, the branching factor is in-
creased. However, the new macro will not be appli-
cable in all situations. Let b be the branching factor
without the macro in question. Let c be the fraction of
states where m is applicable. Furthermore, not all a p
plications of m will lead to a solution, so let urn be the
usefulness of m, which is the overall chance of applying
m to achieve a solution; the ratio of the total number
of times m leads to a solution, to the total number of
times any operator is applicable. If 1, is the number
of primitive operators in m, then the time complexity
for the new operator set is of the order:

(b + c) " / ' ~ " ~

The branching factor is increased by the applicability
of m, and the effective solution length is reduced by the
chances of using m, and in proportion to m's length. If
urn is 1, this means m is used at each step of the solu-
tion, and the plan is divided in length by the number
of operators in m. If planning is to be faster when a
macro is added, then the following inequality must be
satisfied:

b" 2 (b + c)"/'="- (1)
1

logb 2 2- log(b + c)
1rn urn
1 log(b+ c)

1, logb
urn 2 - *

The macro length predominates the generality of its
preconditions, c, in 3. So it will be more important
to allow long macroe than more specific macro p r e
conditions. However, the preconditions cannot be ig-
nored; impractically large values are required for b to
make the second fraction in 3 approach unity. Note
that urn and lrn are not independent; 88 the length
grows the chances of the macro being used in a plan de-
crease. Furthermore, it is alm assumed that the space
searched does not change with m. Under this assump
tion, b and c are independent.

Equation 3 cannot be used directly for selecting new
macroe because urn, b, and c cannot be effectively com-
puted a priori. However, these values can be approxi-
mated statistically. After a number of trials, equation 3
can be used as a dynamic filter to remove unneceeeary
macroe.

Iba [Iba, 1989) prop- dynamic filtem in hie
MACLEARN system. However, the implementation
seem ad hoc; the user determines when to call the
dynamic filter routine, which deletea all macroe that
have not been used at least once in a previous problem
solving episode.

The utility measure is not based on the number of
preconditions in a macrodperator (as it is done in

Minton's system), since aa will be explained in the re-
mainder of the paper, the number of preconditions
does not increase in my system.

Macros, Abstractions, and Cases
This section suggests a common representation for
macros, abstractions, and casea in a planning sys-
tem. It will show the similarity and differences be-
tween these methods, and suggest that a common r e p
resentation will allow a problem solver to use all three
strategies simultaneously.

The p r o w representation will enable a planning
system to maintain important advantages of previous
system:
0 The planner will learn only when there is strong

motivation, in order to increaae performance in
the future. This point has been shown by the
MACLEARN system (flatten the search space, [Iba,
19891) and by the CHEF system (repair failed plans
and anticipate problems, [Hammond, 19891).

0 Proposed macros are filtered statically as well as dy-
namically. A new heuristic described in equation 3
is used.

0 The planner learns from a worked example (similar
to MACLEARN, PiL2 [Yamada and Tsuji, 19891,
CHEF) rather than using a brute force search to
find new operatom (which would be similar to MPS
,[Kerf, 19851.

0 The planner should be able to use a heuristic func-
tion or other knowledge that is available.
Korf mentioned the similarity between abstractions

and macroe [Korf, 19871. Both methods try to reduce
the search by generating a skeleton search space of
the original problem space. Instead of searching in
the original space, a solution is found in the skeleton
space and this solution is then refined into a solution in
the original problem apace. One difference, however,
is that there can be more than one abstraction level
whereas macroe normally generate only one skeleton
space.

Caees can be viewed as long, specific macme. The
main distinction between macros and casea is the way
in which they are used in a planning system. Casea are
fetched from memory and some plan critics are applied
to change the case to the new situation. Macroe are
usually not altered, i.e. the sequence of elementary
operatom ia not adapted to the new situation.

The common feature among all three i t e m is that
the moet important information stored is a set of pre-
conditions and a set of effects, as for elementary oper-
ators.

Abstraction hierarchies are equivalent to elementary
operators that are missing some precondition pred-
icates. This means that although the speciric exe-
cution dependa on all preconditions, the effects can
be achieved independently of the actual value of the

2

deleted predicates in the preconditions. One abstract
operator can be specialized in a number of different
ways. The representation can capture this by associ-
ating a set of operators with preconditions and ef-
fects. This structure represents that the effects can
be achieved given that the pre-conditions are true,
but that the instantiation of the plan may depend
on predicates not mentioned in the pre-conditions. A
method similar to PiLP’s perfect causality heuristic is
used to generate new operators that depend on fewer
preconditions. More than one level of abstraction can
be represented by showing that elements of the refine-
ment of an abstract operator can consist of abstract
operators.

Common representation
In our common representation, shown in Figure 1,
an operator is recursively repreaented as (a) a pre-
conditions and effects pair, and (b) a set of refinements,
each of which is an operator sequence. A primitive o p
erator has no refinements, and can be executed.

A variety of well-known problem solving knowledge
is supported. An operator is like a macro if (a) there
is only one refinement, (b) each operator in the re-
finement is a primitive, and (c) pre-conditions and ef-
fects predicate arguments are instantiated in neither
the operator nor the refinement (i.e. the macro has
formal parameters). A case is an operator with a re-
finement that is a fully instantiated (long) sequences
ofiprimitives (Le. an instantiated macro). An abstract
operator at criticality level k has refinement/s whose
operators are abstract ones at level k - 1. This r e p
resentation supports related (predicates deleted from
preconditions, ABTWEAK) as well as reduced (pred-
icates deleted in preconditions and effects, ALPINE)
models of abstraction [Knoblock, 19911.

An operator is a subgoal sequence if all refinements
contain no primitive operators (e.g. means ends anal-
ysis). Anticipation of failure can be represented by an
operator whose single refinement is a single operator
preconditions, effects pair in which there is an ad-
ditional effect (such as “avoid soggy broccoli”). This
ensures that the planner knows about the problem, and
the refinement of the failure anticipation operator will
be expanded using the successful plan, which is also
stored as an operator. Since our representation doea
not enforce a common level of abstraction for opera-
tors in the refinement, a case or macro can also be
generalized by making some operators non-primitives.
This allows us to store adaptations of a case such as
the replacement of some steps. Reactive rules may be
represented as an operator whose single, tw-perator
refinement is a fully instantiated, primitive first opercc
tor, followed by a non-primitive preconditions, effects
pair. If this twooperator refinement is reversed, then
the resulting operator is suitable for backward chain-
ing from the goal (similar to RWM [Guvenir and Ernst,
19901).

While this generality provides a common operator
representation, it ale0 preaenta the immediate problem
of controlling the creation of operators, so that plan-
ning is not imposeibly expensive. We intend to control
thia using the dynamic operator deletion mechanism
introduced above. In addition, the learning methods
that add operators to the case memory must do so only
when there ia strong justification, and must choose
“important” parta of new plans for storage, deciding
the level of abstraction, number of refinements, and so
on. This is the subject of current work. The common
repreaentation enables us to treat the various kinds of
planning system in a single consistent framework, to
better aid analysis and comparison.

The planner may choose to “forget” the refinements
of some operators, when their usefulness decreases.
But the preconditions, effects pair is retained, and
the detaib can be replanned if necessary.

Planning using a common Representation
This section indicates how one might use the operator
representation given in this paper. The planner should
combine case-baaed as well as classical planning tech-
niques, to take advantage of both previous experience,
and the ability to solve new problems. What is needed
is a control strategy that recalls and uses previous ex-
periences to solve similar new problems, but gracefully
moves into classical planning if no similar casea can be
found. The recursive structure of the representation
lends itself well to a recursive control strategy. Learn-
ing is designed to support and improve the planning
process, by storing new operators. The planner should
restrict the branching factor of the search space by fo-
cusing on a small number of operators instead of all
applicable ones.

The input to the planner are initial state, goal state,
and the operator set. Additional input is a resource
limit and a skeleton plan agenda, which may support
resource limited and multiple task planning. The plan-
ning begina by matching and recalling stored operators
that have pre-conditions and effects similar to the cur-
rent state and goal. The refinement/s of these opera-
tor/s will give various types of plans to be considered
for solving the current problem.

Recalling similar operator8 A stored, similar case
may have additional preconditions or effects, or be
missing some. Operators should be recalled when their
preconditions and/or effects are similar to the current
goal and initial state. Possible indexing schemes for
recall can be b a d on the number of predicates in p r e
conditions and eff’te, the predicates themselves, or
combinations of predicates.

Recalling is independent of the learned operator hi-
erarchy; the fetched operator is not necessarily at the
top level of a refinement tree. For example, if there is
an abstract operator to move a medium disk indepen-
dently of the small disk, and one refinement of this is

3

K E Y [Pre, Post] indicata a non-primitive operator, < Pre, Post > a primitive one, and < [Pre, Post] > either. < [Pre, Post] >‘
an operator with predicata at criticality level 1: or above.

[Pre, Post] - General Operator:

< [Preml, P ~ t m l] >, < [Prema, Pwtma] > . . . < [Pre,.,, P~tmn,] >
Each Preil =+ Pre and each Posti., Post.

Macro (uninstantiated arguments) or Cue (inatmtiated ugumento):

Aktract operator:

[Pre, Post] -. < Pie, Post1 >< Prq, Pwta >. . . < Pre., Post >

<[~nti,~atl~]>’-’,<[~nl~,~wt~a~>’-’. . . < [~ n ~ . , , ~ m t ~ . ,] > ~ - ~ -
[Prep post]’ - < [~rel, ~os ta i] < [Pren, ~ostaa] >‘-I . . . < re.,, ~ w t a . ~ >

< [Preml, ~ m t m i] >’-’, < [Prima, ~ a t ~ a] >‘-I . . . < [Prim.,, ~mtm.,] >’-I

Automatic subgorling: [Pre, Post] - [Pre, Pwt~][Pror, Postal . . . [Pre., Pwt]

Anticipation of failure: [Pre, Post] - [Pre, Post11

Reactive rules: [Pre, Post] -+ < Pre, Post1 >[PI-, Post]

I RWM-type operator subgorl: [Pie, Post] - [Pre, Pootl]< PI-, Post > 1
I

I
Figure 1: The representation of planning operators.

to move the medium disk when both are on the fimt
peg, and if the current state is that both d i s b are on
that peg, that refinement is retrieved, rather than a
more abstract one.

Adapt ing an existing plan Adaptation of a plan
to new initial states and goal states is done by
analysing the differences among the initial state and
the preconditions and among the goal state and the
effects of the similar plan. There are a number of gen-
eral purpoee adaptations to a plan that substitute one
operator, listed below. If these don’t provide a com-
plete plan, then we treat the adapted plan as a subplan
and use meana ends analysis to complete it.

Replace Steps: An operator should be removed and
steps inserted to achieve either pre-mnditions or ef-
fects.
0 Remove Side effect: If a plan fails because one

operator has a specific side effect try to replace
this operator with one that worb.

0 Protect effect: A following operator destroys an
effect of the solution. n y to replace this operator
with one that does not change the side effect.

Substitution: Replace a variable instantiation with
a different object (the operator sequenrz is un-
changed).

To find where to replace an operator, prtcooditiona
of the case that are not given in the current situation I

are pushed forward up to the fimt operator depending
on thocle preconditions. Then the planner finds all
elemenb of the effects that are dependent on this o p
erator. If the effects are also part of the current goal,
the system generatea a new planning problem from the
state just before the operator with the non-matching
precondition to the first operator that uses any of the
effects established. For example, if the goal is to have
a barbecue and one of the preconditions is to have
a match, this precondition is pushed forward to the
operator mko-f iro. Since fire is a prerequisite for a
barbecue, this effects is pushed backward to the o p
erator put steak8 on fire which has har-f iro aa a
precondition. The system then trim to “improvise”
and generate a plan using the state just before the o p
erator mko-fir. to operator put rtoakr on fir..
Given that we have a lighter in the current state, this
plan can be easily generated. The light match opem
tor is replaced by the uro lightor operator. “Remove
side effecb” and “Protect effect” are specializations of
the Replace operator strategy.

If the non-matching p-ndition does not estab-
lish a current goal predicate, the system tries to apply
all operators of the plan, substituting variables where
necessary (e.g. beam for broccoli). For example, given
a plan to make a beef and bean dish from the ingredi-
ents, and if the system returns a plan for a beef and
broccoli dish, the precondition have broccoli does not
establish any predicate in the current goal (beef and

4

beans dish). In this c w , the system simulates the
plan and usea beans instead of broccoli.

After the case has been fixed to achieve all its ef-
fects with the new initial conditions, the system tries
to achieve missing goal conditions one by one, using
means ends analysis. The first non-satisfied term of
the goal conjunction is selected and a new planning
problem is generated from the goal state of the case to
the goal state of the original problem.

The planner computes the subgoale that are neces-
sary for the achievement of any of the adaptations or
classical planning rules. It then retrieves similar cases
for each of the generated subgoals and tries to work on
them in order of similarity. This can ale0 be wed to re-
pair failed plans, if the failed plan is stored in memory
with a new effects added so that the failure is avoided.

Learning General Operators
Many researches have investigated different meth-
ods for constructing macro8 (Korf, 1985; Korf, 1987;
Minton, 1985; Iba, 1989; Yamada and Tsuji, 1989). A
comparison of thoee methods leads to the following i s
sues:

Generalized macros Korf’s MPS system [Korf,
19851 stores instantiated macrm, whereas Yamada’s
PiL2 system [Yamada and Tsuji, 19891 and Iba’s
MAC-LEARN system [Iba, 1989) generalize macros, so
that they are more widely applicable. Although gen-
eralization of macros seems intuitive, it also increasea
the search space, especially if many objects exist in the
domain.

Worked examples The MPS system searches for
macros to fill the table. In the worst caw, this may
prevent the algorithm from terminating, although a 80-

lution to the problem may exist. This can occur if MPS
is trying to find an imposeible macro. PiL2 and MAC-
LEARN use a “worked example” to extract macrce. A
“ worked example” is either a successful plan or part
of the search space that was searched when trying to
find a successful plan. This means that no extra search
effort is required for the generation of macros.

Motivation The motivation behind the MPS sya
tem is to combine automatic subgoaling with macros.
Macros are used to serialize a subgoal sequence by
guaranteeing that the goal conditions of previous sub-
goals are satisfied after the application of the macro,
although they may be temporarily destroyed during its
application. The heuristic used in the MAC-LEARN
system is to generate macros between peaks in the
heuristic evaluation function. This means that macros
are used to flatten the search space of the heuristic eval-
uation function 80 that valleys can be traversed faster.
The PiL2 system usea the perfect causality heuristic. It

extracts a macro from a successful plan if (a) the pre-
conditions of an operator in the plan were not satisfied
in the initial state, and (b) the preconditions of this
operator were satidled after the application of previ-
ous operators. The motivation is to generate macros
that allow the system to apply more operators to the
initial state.

Learning Abstraction Hierarchies with
Macros

Although a common representation is powerful, the
manual generation of uaeful operators requirea a large
amount of domain knowledge and is tedious. Ideally,
the planning system should learn operators from its
previow experience. Therefore, a learning system was
designed to create new operators for the representa-
tion. There are two major motivations for the system
to learn:

Failure The system generates a plan that failed.
Here, it tries to avoid generation of invalid plans in
the future. Examples are anticipation of failure in
casebased planning systems or explanation based
learning rules.

Succerr Given that the system generated a success-
ful plan, extract information from this plan to speed
up the process for similar goals in the future. The
generation of macro-operators and automatic sub-
goaling fall into this category.

The “need to learn” is easily recognized in the failure
driven approach. The system knows exactly when new
information has to be added, that is exactly when a
generated plan failed. The problem is to decide what
information should be stored in order to avoid failure in
the future. For example, should the fully instantiated
problem be stored or a generalization of it.

Learning in the success driven approach is harder,
because the system must decide when to integrate new
knowledge as well aa what knowledge to integrate. For
example, the MAC-LEARN system motivates learn-
ing by trying to flatten the search space. In PiL2, a
sequence of operators that are used only to generate
preconditions of a following operator should be com-
bined in one macro so that the operator can be applied
to the initial state.

This paper propoeea two new heuristics for the gen-
eration of macrw. The motivation is that to improve
performance, a macro learner must improve the o p
erator set. A macro-learner only changes the oper-
ator set, it d a s not tell the planner when to apply
new operators. For example, it does not affect the
heuristic evaluation function. Previous systems such
as MAC-LEARN and PiL2, however, do not take the
current operator set into consideration when learning
new macros. There are two ways in which an operator
can be improved.

Heuristic 1 Try to create new abstract operators
that contain fewer prtconditions than existing oper-
ators, and identical effects. That meam that certain
conditions can more easily be generated.

Heuristic 2 Try to introduce operators that have
fewer effects than existing ones. This generates oper-
ators with more specific effects, so that the planning
system can affect the world more controlled.

Heuristic 1 is more interesting because it generates
an abstraction hierarchy of operators. T h b paper de-
scribes the implementation of a macro-learner that
u r n only the first heuristic to find new macrotl.

I Implementation of the Macro-Learner
The learning system described in this paper is an ad-
dition to the AbTweak planning system implemented
by Yang [Yang and Tenenberg, 19901. The macro-
learner generates a s u c d u l plan using AbTweak and
extracts macm from it.

Figure 2 is a pseudo code description of the algo-
rithm used. Explanation baaed generalization (EBG)
is a common kchnique for the generalization of a
macro [Minton, 19851. The problem is given a sequence
of operators and variable instantiations to compute
the weakest set of preconditions that still allow the
achievement of its effects.

Post-Conditions The post-eonditions of an opera-
tor are the set of facts that must be true after appli-
cation of the operator. It is different from the effects
of an operator because the effects only mention facts
that are changed by the operator. However, the p r t
conditions that are not affected must also be true after
application of the operator. The poet-conditions are
equivalent to the effects plus all predicatea in the p r t
conditions that are unchanged.

Logically Equivalent Description8 The major
problem in the implementation of the system is that
there is more than one poeeible logical description of
the world. For example, in the towers of Hanoi p rob
lem, the states (not OM POgl)(not on8 Pog2) and
(on8 Pog3) are equivalent because there are only three
poeclible pegs and each disk must always be on a peg.
The macro-learner extracts macrotl that have the same
poet-mnditions but can be uecd to generate abstract
macm. This meane that the algorithm must establish
the logical equivalence of world states. There are two
possible solutions to this problem.

The first method usca a resolution theorem prover to
prove the equivalence of poet-conditions. This method
is the most general one. A set of axioms can be given
that can be used to prove facts about the domain.
Since the operator set describes all elementary actions
by which the world can be affected, it is also possible
to derive certain facts used in the proof. For example,

since the only operator that moves the small disk es-
tablishes the fact that the small disk is on some peg,
the system can derive the fact that the disk is always
on some peg.

The second method usea a unique description of the
world. Two states are identical if and only if they have
the same description. This can be achieved by chang-
ing the repmentation of operators or by designing a
set of domain dependent rewrite rules that change a de-
scription dynamically. For example, a rewrite rule can
be uoed to convert (not on. Pogl)(not onr Pog2)

This projecta focura on the feasibility of learning
abstract operators rather than the design of a practi-
cal planning system. Therefore, the standard descrip
tion language of operators was changed to generate a
unique description of all world states. For example,
the standard ddinition of the operator to move the big
disk in the towen of Hanoi problem is

to (O M PO@).

8O+O-big($l($z)
Pro: (onb $X) (not on8 $ X I (not on. $Z)

(is-pog $X) (is-pog $2)
Port: (onb $2) (not onb $XI

This definition was changed to allow unique descrip
tions of poot-conditions. Therefore, the BO+.-big o p
erator was defined M follows:
mvo-big($X $Y $2)

Pro: (onb 8x1 (on8 $Y)
(is-pog $XI (ir-pog $I) (ir-pog $Z)

Port: (onb $Z) (not onb $XI

This means that all operators must reference all
three pegs in their argument list, and that all facts
are represented directly instead of indirectly.

Example
This section shows an example of the macro-learner in
the towers of Hanoi domain with two disks. There are
three reasons for selecting this problem.

0 It was essy to find a representation of operators that
resulted in a unique logical description of the world.

0 The problem is well studied and comparison to other
planners can be made. Also, the optimal solution for
this problem is known.

0 The structure of the problem is weil suited to a b
atract operatom. In fact, abstract operators can re-
duce its time complexity to be linear in the length
of the solution.

In the initial state, both disks are on the first peg.
The goal is to move both disks on the third peg. The
standard operator set is changed to use a unique logical
description and is represented- by:

6

~acro-~oarnor(Plan, Oporator-sot
Computo all porriblo macro8 in tho plan.
For oach macro in the plan and oach operator do

macro-gon := mG(8aCr0,Op)
vorld := port-conditionr(macro-god
if world f po8t-COnditiOn8(Op) thon

if pro(8acro) and pre(op) differ in on0 prodicate
ab := CrOatO-ab8traCt-OpOratOr(maCrO,Op)
link(ab, op)
l i d a b ,macro

operator-rot : = add-oporator(ab, oporator-rot
roturn(operator-rot

Figure 2: Macro-Learner Algorithm

.ove-r(SX tr SZ)
(onr $ X I

Pro: (irpeg W(irprg tY)(irpog SZ)

Port: (not onr $X)(onr SZ)

more-b($X SY $2)

(onr SY)
(onb $ X I

Pro: (irpog tX)(irpeg $Y)(irpog SZ)

Port: (not onb SX)(onb SZ)

AbTweak is used to find a solution for this
problem which is the sequence move-r(Pog1 ,Pog2),
movo-b(Pog1 ,POg3), BOVO-8(Peg2,POg3). From
this solution three macro sequences can be extracted.
8.q-1: moVO-r(POgi ,Peg2) ,mo~~-b(P~gl,Pegb)
8.q-2 : move-b(Peg1, Peg3),8010-8 (Peg2 ,Peg31
8.q-3: BOVO-r(POgi ,Peg2) ,move-b(Pog1 ,POg3),

1 0 V O - 8 (Peg2 ,POg3)

From the first sequence roq-1, the following macro
can be generated after using EBG to compute its p r t
conditions and effects. Operator macrol is not changed
when generalizing with the original operator move-b
because neither restricts the variable instantiations.

Pro: (is-peg $VI) (is-peg $V2)
macrol(SV1 tV2 SV3)

(i8-pOg $v3)
(onr $VI) (onb $Vi)

Port: (on8 $V2) (onb SV3)
(not on8 $Vi) (not onb SV1)

The post-conditione of macro1 and movo-b are iden-
tical (except renaming of variables) and are given by
the following set of facts:
(ir-pog $Vi) (is-pog SV2) (is-pog SV3)
(on. SVZ)(onr SV3)

The algorithm then compares the pre-conditions of
macro1 and move-b. The preconditions differ only in
the predicate on8 which is (onr $Vi) for macrol and
(on8 $V2) for movo-b. Therefore, the macro-learner

constructs an abstract operator in which the on8 pred-
icate is deleted. This abstract operator ia generalized,
and it COntaiM two refinements: more-b and ucroi.
However, in order to avoid unnecessary variable instan-
tiations, the linked macro is fully instantiated. In that
way, if the same problem hae to be solved in the future,
the variables do not need to be reinatantiated. HOW-
ever, the abstract operator shows the generalization
that is possible. Figure 3 shows the resulting operator
hierarchy.

Since only macrol and move-b have identical post-
Conditions, the abstract operator in figure 3 is the only
new operator that is added to the operator set.

Evaluation
With the implementation of the macro-learner, we
tried to establish the usefulneae of our first heuristic (to
improve the operator set by generating new operators
with more general preconditions). It is interesting to
note that this heuristic leads to an abstraction hierar-
chy for the two-disk towers of Hanoi problem that is
identical to the one shown to be optimal by Knoblock
[Knoblock, 19911. If the planner u ~ e s a control strategy
that supports abstractions, the time complexity grows
only linearly with the length of the solution [Knoblock,
19911.

Good performance of the planning system with the
new operator set waa expected, because the optimal
set of abstractions waa generated. This waa verified in
a number of experiments where the solution time WM
reduced from 40 to 24 seconds on a Sparc 2 station.
It took ten seconds to compute the abstract operators.
Similar results were obtained for the problem with the
initial state (on8 pog3) (onb pogl) and the goal state
(onb pog3) (on8 pog3).

The macro-learner waa also tested on the towers of
Hanoi puzzle with three disks. The results of these
experiments were similar to the ones for the previous
example. The macro learner created two abstract op-
erators:

0 move the medium disk ignoring the small disk.

7

[Abstract-l ($X $Y $z)]
{Move big didc, ignore small didc}

move-s($X $Y sz)>
(move small disk}

d v e - b ($ X $Y $Z)>
move bg disk, small is on peg SY)

(move big disk, small is on pegl, big is on peg 1)

L! move-s(Peg1 Peg3 Peg2)xmove-b(Pegl Peg2 Peg3)>

Figure 3: Learned Operator Hierarchy for the Towers of Hanoi 2

0 move the large disk ignoring the medium disk.

These abstract operators are learned s&r only one
successful plan is generated. After solving the prob-
lem a second time, the abstract operator learned to
move the large disk regardless of where the medium
and small disks are. These! two abstract operators t e
gether with the primitive operator to move the small
disk form the optimal operator set for the towers of
hanoi problem with three disks. The solution time de-
c r e d from 2658 seconds to 29 seconds. The compu-
tation time for learning the abstract operators waa 81
eeconds. This result suggests that the learning time
scales up much better than the planning time.

The moet interesting result of the towers of Hanoi
problem with two and three d i s h waa that the aystem
learned the optimal set of abstractions. This m e w
that it not only learned the correct number of abstrac-
tion levels, but also the correct number of abstract o p
erators for each level. Previous systems auch as MPS,
MAC-LEARN, and PiL2 are unable to learn these ab-
stract operators.

Learning other Problem Solving
Knowledge

This section describes methods for learning other prob-
lem solving strategies that can be represented in our
common representation. One of the main advantages
of a common representation b that not all operatom in
a refinement have the same level of abstraction. Them
fore, other strategies auch aa reactive rules can be uaed.
These strategies can be learned by comparing all refino
menta of a general operator.

After learning a new operator, the system uaea addi-
tional heuristics to incorporate the new operator into
the existing operator set. All new macroe are part
of the refinement of a more abstract operator (or the
original initial state, goal state pair). The system com-
pares the new operator to all other refinements of its
abstract operator.

Raising Operators First the system tries to extract
operatore that occur in all refinements. The common
operatom are "raised" in the almtraction hierarchy, ao
that the planning system can focua on t h e operators.
For example, given the abstract operator in figure 3,
the operator to move the big disk is common in both
refinements. In t hb case, the abstraction hierarchy is
changed to reflect the fact that the operator roto-b is
an eseential part of moving the big disk. The resulting
abstract o erator is similar to the RWM type operator
subgoale hiivenir and Ernat, 19901. If the common
operator occurs at the beginning of 'the sequence, a
reactive rule t formed.

Generating Abrtractiona from Subsequencer
The system dm extracts equivalent poet-conditiona
resulting from the execution of operatom in all refine-
ments. If matching poet-conditions are found, these
states are extracted aa new abstract operators. For ex-
ample, m u m e that there are two operators to move the
big disk, roto-bl and roto-b2. Furthermore, in fig-
ure 3, the system used rovo-bl in the first refinement
and .oto-b2 in the second refinement. In that cane,
there are no common operatore in all refinements. Nev-
ertheless, common to all refinements is a state where
the small disk is on peg t T . Therefore, the original
problem is broken up into two abstract operators. The
first one moves the small disk onto the medium peg,
the second abstract operator moves the medium disk.
The resulting operator hierarchy is identical to a sub-
goal sequence.

Failure When the system generates an unsuccessful
plan, gome of its expectations are wrong. If the Uder
provides the system with additional information ex-
plaining why the plan failed (e.g. (problem-I)), the
system can generate an abstract operator that relates
the original problem to an elaboration of the prob-
lem, where the effects have additional conditions. (e.g.
(not problem-I)). In the future, the planner is re-
minded of this problem and c.an avoid it.

8

Conclusions
The major contribution of this paper ia the design of
a learning system for a planner that combines macros,
abstraction hierarchies, and caae-based planning. The
advantage of this approach is that techniques from
both classical planning and castbased planning can
be combined in the problem solving procem.

The paper describes an analytical dynamic filtering
scheme used to rule out inefficient operators. The dy-
namic filter is based on a formula relating the empirical
usefulness and the length and branching factor of the
operator. The common representation means that the
dynamic filter can be applied to abstract operators and
cases as well.

The paper also compares three previous approaches
to the selection of new macros: Korf’a MPS, Iba’s
MAC-LEARN, and Yamada’s PiL2 system. From thia
comparison, guidelines are suggested for the selection
of new operators. The goal in creating a new operator
is trying to improve the current operator set. There
are two ways in which an operator can be improved:
0 Create an operator with more general pre-

conditions. The effects of this operator can then
be achieved in more states. The removal of pred-
icates in preconditions leads to the generation of
abstraction hierarchies.

0 Create an operator with more specific effects. This
removes side-effects of existing operators.

A macro learner waa implemented and tested on a
number of problems in the towers of Hanoi domain. As
important parts of the complete planning systems are
still missing, the implementation focused on comparing
the learned macros to the ones learned by other a y e
tema. The results of the towers of Hanoi domain are
promising.The system learned the optimal set of ab-
stract operators for the two and three disk problems.

The paper also describes methods to learn diverse
problem solving knowledge such as reactive rules, and
automatic subgoding. The next step in our research
is the implementation of a complete planning system
that incorporates these methods.

The paper also compares three different approaches
to the selection of new macros. From thia compari-
son guidelines are suggested for the selection of new
operators. The main motivation for these heuristica ia
to find widely applicable operators with very specific
effects.

I

I

References
Jacky Baltes. A symmetric version space algorithm
for learning disjunctive string concepts. In Proc.
Fourth UNB Artificial Inielligence Symposium, pages
55-65, Redericton, New Brunswick, September 20-1

H. Altay Guvenir and George W. Ernst. Learn-
ing problem solving strategies using refinement and

; 1991.

i

macro generation. Artificial Inielligence, 44(3):209-
243, 1990.
Kristian J. Hammond. Case Based Planning. Aca-
demic Pmo Inc., 1989.
G. A. Iba. A heuristic approach to the discovery of
macm-operatore. Machine Learning, 3(4):285-318,
1989.
Craig A. Knoblock. Avtomaiically Generaiing Ab-
stmctiona for Problem Solving. PhD thesis, School of
Computer Science, Carnegie Mellon University, 1991.

R. E. Korf. Macrwperators: A weak method for
learning. Artificial Intelligence, 26(1):35-77, 1985.
R. E. Korf. Planning aa search: A quantitative a p
proach. Artificial Intelligence, 33(1):6&88, 1987.
S. Minton. Selectively generalizing plans for prob-
lem solving. In Proceedinga of ihe Ninth Iniernational
Conference on Artificial Intelligence, pages 595-599,
1985.
P. Shell and J. Carbonnel. Towards a general frame-
work for composing disjunctive and interative macro-
operators. In N. S. Sridharan, editor, IJCAI-89 Pro-
ceedinga of ihe Eleventh Iniernational Joint Confer-
ence on Articifical Intelligence, volume 1, pages 596-
602, 1989.
S. Yamada and S. Tsuji. Selective learning of macro-
operators with perfect causality. In N. S. Sridharan,
editor, IJCAI-89 Proceedings of the Elevenih Inier-
naiional Joint Conference on Articifical Intelligence,
volume 1, pages 603-608, 1989.
Qiang Yang and Joeh D. Tenenberg. ABTWEAK:
Abstracting a nonlinear, least commitment planner.
Technical report, University of Waterloo, 1990.

Tech. Report CMU-CS-91-120.

9

Barre t t

Search-Control Heuristics and Abstraction in
Least-Commitment Planning

Anthony Barrett
Department of Computer Science and Engineering, FR-35

University of Washington
Seattle, WA 98195

barret t @cs.washington.edu

Abstract
This paper is a research summary on our work re-
garding the interaction of abscraction and search
control heuristics. This work involves the least-
commitment planner SNLP, an abstraction genera-
tion system similar to ALPINE to automaticly gen-
erate problem reformulations, and a system similar
to STATIC to generate search-control heuristics.
We describe an elegant way to make SNLP shift
between representations automaticly.

Introduction
We are performing research on the interaction of ab-
straction and search control heuristics. To get this
research started we have developed a lifted version of
McAllister’s partial order planning algorithm [6], called
SNLP. Extending an incomplete plan in SNLP involves
choosing what part of a plan to extend, and how to ex-
tend it. Choosing what to extend affects the structure
of SNLP’s search space, and choosing how to extend
defines how the search space is traversed.

Previous work on the interaction of abstraction and
search control rules acquired through EBL [5] used
PRODIGY. PRODIGY is a total order planner that
commits to planning decisions much earlier than SNLP.
There are many differences between PRODIGY and
SNLP. These differences cause problems as we adapt
ALPINE [4] and STATIC [2] to generate abstractions
and control rules for SNLP instead of PRODIGY.

This paper starts with a description of SNLP and
shows how a planning decision can be delayed. The sec-
ond part of the paper discusses strategies for deciding
when to consider which planning decision. The third
part discusses two search control heuristics for guiding
a decision. The last part discusses the status of our
research.

The Planner
As part of our research into step ordering commitment
strategies when planning [l] we created a least com-
mitment planner using a lifted version of McAllester’s

Algorithm [SI. Like many of the planners created since
Sacerdoti’s NOAH [?‘I, our planner searches through a
space of r , . ins to find a plan that solves a STRIPS plan-
ning probirm.
definitiou 1 A PLAN is a triple: 4 , 0 , B+ in which
S denotes a set of plan steps (also known as actions),
0 denotes a set of ordering constraints that specify a
partial order on S , and B denotes a set of binding con-
straints over the variables mentioned by the steps in s.

The search starts with an initial plan which encodes
the STRIPS planning problem to be solved. This plan
consists of two steps so and sw. The step so adds the
problem’s initial conditions, and sw requires the prob-
lem’s goals (as preconditions). The algorithm that de-
fines the search appears in figure l. The algorithm is
invoked with a plan P, a set of open goals G, and a
set of causal links L. A causal link S&Sj is a triple
denoting that a step S; adds a proposition p to fulfill a
precondition of step Sj . The set of open goals in G are
the preconditions of steps Sj that do not have associ-
ated causal links SiLSj in L. In the initial invocation P,
G, and L are the initial state, the preconditions of s,,
and the empty set respectively. The algorithm works
by solving open goals in G while protecting causal links
in L from the effects of other steps.

This planner is provably complete for breadth-first
and IDA* searches. Its least-commitment nature pro-
vides opportunities for reordering the consideration of
different planning decisions. Step 2 can select any open
goal at any time. A related algorithm provides even
more flexibility in that it can perform causal link pro-
tection at any time in the planning process. Causal-link
protection need not appear in step 5 .

Deciding What to Refine
Our focus, for now, is on step 2. The order in which
open goals are solved affects the difficulty of finding a
solution. For instance, we implemented G as a stack
and as a queue. For some of our experimental domains,
the stack was exponentially worst than the queue. The
reverse was true for other experiments.

10

Algorithm: SNLP(P, G, L)
1 . Termination: If C is empty, report success and

stop.
2. Goal selection: Let c be a proposition in G, and let

&eed be the step for which c is a precondition.
3. Operator selection: Let S a d d be an existing, or

new, step that adds c. If no such step exists and
none can be added then terminate and report fail-
ure. Let L’ = L u {&dd-%need}. Backtrack point:
All ezisting and addable steps must be considered for
completeness.

4. Update goal set: Let G’ = (G - { c }) u the set of
preconditions of the new step if one was added.

5. Causal link protection: For every step Sk that
might affect a causal link S i z s j E L’:

Protect si-%; from sk by adding constraints be-
tween the 3 steps involved. Backtrack point: All
ways to protect si%, f rom sk must be considered
fo r completeness.

Let P’ be the resulting plan.
6. Recursive invocation: SNLP(P’, G’, L ’).

Figure 1: The Planning Algorithm SNLP

Strategies for deciding which goal to handle next have
a profound effect on the structure of the resulting search
space. This is because delaying a planning decision in-
creases the amount of information available when the
decision is finally made. In the best case there would
be enough information to force the decision. The op-
timal strategy would maximize the amount of relevant
information and reduce the branching a t each of the
backtrack points. If the number of branches can be re-
duced to one at each point, then planning becomes triv-
ial. Unfortunately, it is often the case that we cannot
hold the number of branches to one, and determining
the goal to select for reducing the branching factor is a
nontrivial problem.

One strategy we have experimented with involves as-
signing a static priority value to each possibly open
goal before starting the planning process. This is essen-
tially the “abstractness” number mentioned by McAllis-
ter [6]. One way to define these priorities uses ALPINE.
ALPINE was originally developed for PRODIGY, but
it maps very easily into SNLP. The effect of using
ALPINE ensures that a causal link si%, is never
threatened when solving an open goal q when the pri-
ority of p is greater than q. This is due to ALPINE’S
ordered monotonicity property. This property has in-
teresting effects when considering the causal structure
of a plan.

The causal links in the set L can be thought of as
defining a plan P’s causal structure [lo, 8 , 3 , 111. A
causal support for some proposition P is a minimal set
of causal links, illustrated in figure 2 as arrows, between

steps, illustrated as circles. There is a link to provide
P , and every step mentioned in the causal support has
all of its preconditions provided by links in the causal
support.

n

n

w
Figure 2: A causal support’s structure.

Using ALPINE to assign priorities to open goals, our
planner builts abstract causal supports for high-priority
open goals, and then refines them as the priorities of
the pending open goals in G decrease. Unfortunately,
even though high-priority links never get threatened
when low priority open goals are being solved, exist-
ing steps can threaten the causal links created while
solving low-priority goals. Sometimes a new link can-
not be protected from these threats. Such cases show
that ALPINE does not give us the downward solution
property [4]. This property states that if an abstract
plan can be found, then it can always be refined into a
less abstract plan [9]. ALPINE does give us the down-
ward failure property. This ensures that if an abstract
plan cannot be found, then a concrete plan cannot be
found either.

Currently, our algorithm protects causal links as they
are threatened. This is not necessary. I t may not even
be desirable since there are a huge number of ways to
protect a causal link when propositions can have un-
bound variables. For example, there are 5 different sets
of constraints that can be added to a plan to protect
s i - q (where p is (on ?x ?y)) from a step Sk that
deletes (on ?a ?b). They are:
1. {Sk before s i }

2. {Sk after s;}
3. {?x # ?a, ?y # ?b, and Sk between s, and s j)

4. {?x # ?a, ?y = ?b, and sk between si and s j }

5. {?x = ?a, ?y # ?b, and sk between Si and S j }

If causal link protection was delayed until all variables
were bound, the threat might have taken care of itself
as a side effect of other planning decisions. If the threat
still exists when all variables are bound, then the last
three branches can be avoided altogether.

P

Deciding How to Refine
Step 3 of the original algorithm is very simplistic in that
it tries to refine an open goal in every way possible.
For example, in the blocks world domain, to solve the
goal (on A 8) the original algorithm might generate
the sequence of steps:

11

(move A B) > (move A C) > (move A B)
We are implementing techniques from STATIC to

avoid generating these sequences. STATIC takes a do-
main description and generates a set of control rules
for deciding how to resolve a goal taking into account
the goal’s purpose and the other steps currently in the
plan. Like ALPINE, STATIC was originally created
for PRODIGY. Unfortunately, problems occur when we
try to apply it to improve SNLP. For instance, one of
the problems that STATIC detects and generates rules
to avoid is due to a concept called goal stack cycles.
The example above is an instance of such a cycle for
PRODIGY.

Unfortunatly, goal stacks are a artifact of the way
PRODIGY plans. SNLP does not have them, but it
has a related concept called a goal’s purpose. This pur-
pose is defined to be a list of propositions created by
looking at the path of causal links that starts at the
goal’s associated step and ends at the step s,. Sev-
eral examples of such paths appear in figure 2. At first
glance SNLP’s goal purposes seem to be identical to
PRODIGY’S goal stacks, but such is not the case. A
PRODIGY goal has only one goal stack, but since there
can be several paths from a step to s,, an SNLP goal
can have more than one purpose. Also, as new causal
links are added to a plan, the number of purposes for a
goal increases.

We will use a system similar to STATIC to create a
set of control rules. A goal’s purpose specifies a set of
control rules that apply in solving the goal. Since a goal
may have more than one purpose, more than one set of
control rules may apply. Each control rule that applies
specifies some plan modification. STATIC/PRODIGY
also matched conditions of a control rule against condi-
tions provided by existing steps in order to further re-
strict branching. We cannot do this in SNLP and keep
completeness. Also, as a goal’s number of purposes in-
creases, more control rules apply. This can happen after
SNLP actually attempts to solve a goal. We have not
figured out the best way to handle this yet.

Our planner performs a best first search over the
planning search space. One of our ranking functions
sums the number of causal links with the number of
open goals. This gives us an A* search that prefers
plans with fewer causal links. We hope to use the prob-
lem space graphs generated by STATIC to provide a
better admissible ranking function.

Research Stat us
Currently we have implemented the planner, and a very
simple version of ALPINE, which assigns a priority to
a proposition’s predicate name. We quickly discovered
that we need a more refined priority function. One way
to get this function is to observe that some goal propo-
sitions can never be added by an action. We can use
these propositions to replace a small set of highly vari-
ablized action descriptions with a larger set of actions

12

in which some of the variables are bound to constants.
From this new set we can generate a set of priorities
for propositions where some of the variables have been
bound to constants. We have not implemented this yet.

Acknowledgements.
This research was improved by discussions with Dan
Weld, Steve Hanks, Oren Etzioni, Scott Penberthy, and
Craig Knoblock. It was funded in part by National
Science Foundation Grant IRI-8957302, Office of Naval
Research Grant 90-5-1904, and a grant from the Xerox
corporation.

References
A. Barrett, S. Soderland, and D. Weld. The Effect
of Steporder Representations on Planning. Tech-
nical Report 91-05-06, University of Washington,
Department of Computer Science and Engineering,
June 1991.
Oren Etzioni. Static: A problem-space compiler for
prodigy. In the Proceedings of the Ninth National
Conference on Artificial Intelligence., 1991.

S. Kambhampati and J. Hendler. A Validation
Structure Based Theory of Plan Modification and
Reuse. Artificial Intelligence, to appear, 1992.
C. Knoblock. Automatically Generating Abstmc-
tions for Problem Solving. PhD thesis, Carnegie
Mellon University, 1991. Available as technical re-
port CMU-CS-91-120.
Craig Knoblock, Steve Minton, and Oren Et-
zioni. Integrating abstraction and explanation-
based learning in prodigy. In Proceedings of the
Ninth National Conference on Artificial Inte!h-
gence., 1991.
D. McAllester and D. Rosenblitt. Systematic No.
linear Planning. In Proceedings of AAAI-91, pages

E. Sacerdoti. The Nonlinear Nature of Plans. In
Proceedings of IJCAI-75, pages 206-214, 1975.
A. Tate. Generating Project Networks. In Proceed-
ings of IJCAI-77, pages 888-893, 1977.
J. Tenenberg. Abstraction in Planning. Ph.d. the-
sis, University of Rochester, Department of Com-
puter Science, May 1988.
D. Warren. WARPLAN: A system for generating
plans. Memo No. 76, Univerity of Edinburgh, De-
partment of Computational Logic, 1974.
Q. Yang and J . Tenenberg. ABTWEAK: Abstract-
ing a Nonlinear, Least-Commitment Planner. In
Proceedings of AAAI-90, pages 204-209, August
1990.

634-639, July 1991.

Ben j a m i n

TOWARDS AN EFFECTIVE THEORY OF REFORMULATION
Part 1 : Semantics
D. Paul Benjamin

Department of Mathematics and Computer Science
St. Joseph's University

5600 City Avenue

pbenjami@sju.edu

-$ -62
>

' a , . : \ : .' 7r '

Philadelphia, PA 19131-1395 15 / -

ABSTRACT

This paper describes an investigation into
the structure of representations of sets of
actions, utilizing semigroup theory. The goals
of this project are twofold: to shed light on the
relationship between tasks and representations.
leading to a classification of tasks according to
the representations they admit; and to develop
techniques for automatically transforming
representations so as to improve
problem-solving performance. A method is
demonstrated for automatically generating
serial algorithms for representations whose
actions form a finite group. This method is
then extended to representations whose actions
form a finite inverse semigroup.

Introduction

This paper describes an algebraic approach
to building systems that can automatically
change their representations. Representation
change, also called reformulation, has long
been recognized as an essential component of
intelligent systems (Amarel, 1968) (Simon,
1969). but the automation of representation
change has proved elusive. The understanding
of representations and their properties lags far
behind the understanding of search methods
and their properties. This difference is
reflected in the structure of AI programs: most
contain a large number of search methods
acting on a single representation. This was
true for GPS, and remains true today, e.g.,
SOAR, Prodigy, and automated theorem
provers, which typically possess a multitude of

variants of resolution acting on a
representation in normal form.

This paper attempts to begin to rectify this
situation, wi th a formal investigation of the
properties of representations, and algorithms
for representation change. This paper does not
examine representation changes that are
heuristic or inductive (these have been
investigated by a large number of researchers
in machine learning), but rather deductive
reformulations that preserve logical soundness
and completeness: no solvable problems are
rendered unsolvable, nor are unsolvable
problems rendered solvable.

Deductive reformulations are much less
well understood than heuristic or inductive
transformations. In this type of reformulation,
representations are not changed to alter their
logical properties, but are changed to improve
their computational properties, especially their
search and input characteristics. As we will
see, these computational properties can be
well characterized algebraically.

Representations

It is well understood that representation
selection sets the stage for both problem
solving and learning, and that the choice of
representation can greatly affect the cost of
both. The examples in the next section will
illustrate that the proper choice of
representation is data-dependent, so how can a
system know the best concept language for the
data before seeing the data?

1 3

This leads to a problem: a system must choose
a representation before i t can know what
representations would be good.

In AI practice, this problem is resolved by
the humans who develop the system. They
have prior knowledge of the classes of tasks
that the system will face and the demands that
will be placed on it, and they engineer a
representation whose properties will aid the
system in meeting these demands.

This has led to the current situation in AI:
research is concentrated almost exclusively on
development of planning and learning
algorithms, and these algorithms are cast as
search in problem spaces and concept spaces,
respectively. The search through the space of
representations is performed by skilled
humans. Although research on planning and
learning algorithms is certainly important, the
neglect of research on reformulation has led to
three major limitations of 'AI research.

First. a wide variety of truly autonomous
systems cannot be constructed as long as
skilled humans are required to engineer the
representations for the systems. It will only
remain possible to build expert systems that
can function in small, static domains, in which
the representational demands on the system do
not change over time. This limitation has
special significance for the application of AI
techniques to robotics.

Second, the dependence of planning and
learning algorithms on the properties of the
representation is unstated in AI papers,
thereby raising questions about the validity of
the conclusions drawn about the properties of
the algorithms, as it is unclear how to separate
the properties of the algorithms from those of
the representations. This leads to the
unsettling possibility that researchers may
have (subconsciously) engineered
representations that cause planning or learning
algorithms to perform well. If true, research
results would be irreproducible (as other
researchers might engineer different
representations), and the underpinnings of AI
as a science would we weakened.

Third, this leads to very narrow
conceptions of problem solving activities. For
example, research in planning has focused on
algorithms that construct a set of behaviors for
the agent to exhibit for a particular task. These
behaviors may be organized so that different
behaviors are executed dependent on runtime
conditions in the environment, but the
limitation is that planning has been conceived
as the process of constructing this set of
behaviors. This conception has been
challenged by recent work (Agre & Chapman,
etc.) which argues that in complex domains the
number u t behaviors necessary for a successful
plan is tc i u g e to construct before execution.
Instead. . system plans by designing u
program ':a will generate at execution time a
behavior to attain the goal. In this new
conception, planning becomes a design
process, consisting of repeated cycles of
design and performance testing. The design
steps consist of both representation design and
algorithm design, and the performance testing
is the actual execution. In this way, the
planner is constantly redesigning the program
(if necessary) during execution. (Note that the
bees of Agre & Chapman or the robot insects
of Brooks are programs that are designed by
humans, so the planning was done by the
humans.) The classical conception of planning
as constructing a set of behaviors is a special
case, when the program ;imply consists o f the
actions to perform in v:! :ous situations.

Similarly. research in learning has
primarily focused on algorithms for
constructing a new hypothesis from an existing
hypothesis, given a set of new examples. But,
beginning with the work of Mitchell and
Utgoff, machine learning researchers began to
realize the importance of representation
design. I t is by now widely recognized in the
machine learning community that the design of
the hypothesis language is crucial in efficient
learning: the language must be restricted to
permit the system to successfully identify a
hypothesis without having to see all the
possible cases, but choosing a sublanguage
that doesn't contain anv good hypotheses will
lead to failure no .nstter what learning
algorithm is used. Recently, conferences and
workshops have been held on this topic, and
books have begun to appear. In this respect,

14

the machine learning community is ahead of
the planning community. Researchers in
planning should note that Amarel's seminal
paper dealt with reformulation in problem
solving, not in learning.

As a result of these three limitations, we
are led to the conclusions that representation
change is a necessary capability of any
autonomous intelligent system, and that AI
needs a fuller understanding of representations
and their properties. In the next section, we
consider the types of properties that
characterize good and bad representations, to
understand the goals of reformulation.

Computational Properties of
Representations

Representations vary as to the amount of
search they require, the input they require,
their memory usage, etc. Similarly, agents
vary as to their memory, sensory, and motor
capabilities. Tasks have constraints on usage
of various resources, e.g., time. We have
argued that only agents with the capability to
change representations can select a
representation whose characteristics are
appropriate for the particular task at hand. For
example, the agent may not need to find a
globally optimal solution, but only one that
meets certain criteria; in this case, the agent
may be able to simplify the task description,
and find an acceptable solution more quickly.

In order to investigate the relevant
properties of representations, we mus t first
choose the appropriate tools. Virtually all of
the knowledge representation community uses
the tools of logic to investigate the properties
of representations. Certainly, the soundness,
completeness, and complexity of a
representation are important properties:
however, in this paper we are concerned with
the c o m p u t a t i o n a l properties of a
representation, rather than whether it models
the task environment accurately in all cases.
The computational properties of a
representation are independent of soundness,
completeness, or complexity. To see this,
consider the following two representations of
the two-disk Towers of Hanoi:

Representation TOH1: Let us number the
nine states of the 2-disk Towers of Hanoi:

Let the two possible actions be denoted by
"x" and "y". "x" moves the small disk right one
peg (wrapping around from peg 3 to peg 1).
and "y" moves the large disk one peg to the
left (wrapping around from peg 1 to peg 3). In
the figure, "x" is shown by narrow,
counterclockwise arrows, and "y" is shown by
thick, counterclockwise arrows.

Representation TOH2: Let the - states be
numbered in the same way, and let the six
possible actions be:

X1 = move the top disk from peg 1 to peg 2

X2 = move the top disk from peg 2 to peg 3

X3 = move the top disk from peg 3 to peg 1
Y1 = move the top disk from peg 1 to peg 3
Y2 = move the top disk from peg 2 to peg 1

Y3 = move the top disk from peg 3 to peg 2

These two representations are both sound
and complete. Furthermore, they have exactly
the same complexity, as they have the same
number of states and possible actions in each
state. The only difference is in the labeling of
the actions.

Yet, these two representations have very
different computational properties: the first
representation decomposes: it has a subgoal

1 5

reduction, whereas the second has none. This
decomposition permits an agent to solve each
subgoal independently, and then compose the
solutions to form a solution to the task. In this
case, the set of actions decomposes into
actions for moving the larger disk and actions
for moving the smaller disk, permitting the
system to first bring one disk to its goal
position and then bring the other disk to its
goal position without disturbing the position of
the first disk. As we will see, it is possible to
solve either disk first and then the other.

Certainly it is possible for a system using
the second representation to bring one disk to
its goal position m d then bring the other disk
to its goal positicn; obviously, it must do so to
solve the task. However, there i s no structure
in this second representation of actions that
can be used to find this decomposition, i.e.,
the actions do not admit a subgoal reduction.

Thus, we see that a good representation
facilitates problem solving by structuring the
knowledge in a way that helps the agent to
identify relevant actions - the actions for the
first subgoal. We also see that we cannot
characterize this structure by considering
soundness, completeness, or complexity. This
approach is consonant with the ideas of Doyle
& Patil (1991). who argue that "logical
soundness, completeness, and worst-case
complexity are inadequate measures" for
evaluating representations. We are therefore
led to consider an alternative formal method of
chararacterizing the structure of sets of
actions. One of the primary purposes of this
paper is to show that the tools of algebra are
well suited to this purpose.

In particular, the method used in this work
is to apply the theory of semigroups to the
analysis of representations of actions, to yield
both an intuitive understanding of
representations and algorithms for
reformulation. The theory of semigroups is
important in the study of algebraic linguistics
(Chomsky, 1957). (Lallement. 1979). so it is
not surprising that it can prove useful in the
study of the languages used to represent tasks.

This paper describes only the semantics of
representation change, i.e., i t examines the
structure of sets of actions. The various

symbolic encodings of each such structure i n
terms of state description functions is
agent-dependent and deserving of a separate
treatment, and so will be examined in a
subsequent paper.

A Prototypical Example of
Reformulation

To get a more intuitive feel for the issues
involved in reformulation, let us first consider
a familiar example. When we are posed the
problem of finding the volume of a cylinder in
3n arbitrary position, the first thing we do is
c!: mge the coordinates of the problem so that
ar; .:xis p w e s lengthwise through the middle
of' rfie cylinder (the coordinates are moved, not
the cylinder).

We do this because otherwise the
calculations are very expensive. For example,
we could compute derivatives at two places on
the edge of one of the circular ends, find
perpendicular lines (with slopes that are
negative reciprocals of the tangent lines), find
the intersection point of these lines (the center
of the circle), and use the distance formula to
find the radius of the circle. We could then
compute the area of the circle, and apply the
distance formula again to yield the length of
the side of the cylinder. A final multiplication
gives the volume. This is a very expensive
procedure involving 3-dimensional
calculations. Another computationally
expensive possibility is performing an
integration to find the volume.

Changing the basis gives a nice
representation of the cylinder. Now, all we
need to do is read the x-value when y and z are
both zero to get the radius, and read the
z-value when x and y are both zero to get the
length. Just two multiplications are required
(squaring the radius and multiplying the areas
by the length). No 3-dimensional computations
are used. The 3-dimensional problem has been
decomposed into two 2-dimensional
subproblems: finding the area of the circle and
extending this area through the length of the
cylinder. Note especially the reduction in the
perceptual and memory abilities required of
the problem solver: it need only be able to
read values at which the surface intersects

16

coordinate planes, which are single numbers,
and need only manipulate two numbers at a
time. This contrasts with the original
representation, which requires the problem
solver to read triples of numbers, and to be
able to simultaneously store several numbers
at a time, e.g., the equations of the two lines
that intersect at the center of the circle. Low
memory and perceptual (input) cost are key
computational properties of a good
representation, and hence are important goals
for reformulation.

f =

The subproblems are obtained by
projecting the cylinder onto the x-axis and
z-axis, respectively. In the new coordinates,
good subproblems are obtained by projection.
In the original coordinates, this is not the
case: projecting onto any coordinate axis or
coordinate plane yields a subproblem that is
not cheaper to solve than the original problem.

I

As long as the coordinate change process is
not too expensive, this will result in a net
savings, especially if many computations are
performed on the cylinder. Good subproblems
are characterized in this case by their
dimensionality: the lower the dimensionality,
the better the subproblem. The goal of general
reformulation is to find a representation that
facilitates problem solving by permitting
projection to more tractable subproblems, Le..
by permitting creation of good abstractions.

The 2 x 2 ~ 2 Rubik's Cube

It is remarkable that we can use this
approach to reformulation on tasks that appear
very different. Let us examine the 2 x 2 ~ 2
Rubik's Cube. The techniques we will use here
scale up: we are using this small Cube to save
space in the paper. Let the 8 cubicles (the
fixed positions) in the 2 x 2 ~ 2 Cube be
numbered as in the figure (8 is the number of
the hidden cubicle).

Number the cubies (the movable, colored
cubes) similarly, and let the goal be to get
each cubie in the cubicle with the same
number. For brevity of presentation, we will
consider only 180' twists of the cube.

Let f, r, and t denote 180°.clockwise turns
of the front, right, and top, respectively (cubie
8 is held fixed; Dorst (1989) shows that this is
equivalent to factoring by the Euclidean group
in three dimensions). Note that this cubie
numbering is just a shorthand for labeling each
cubie by its unique coloring. This holds true
for the Cube with only 180' twists, as position
determines orientation.

Finding Serial Algorithms for Tasks
Represented by Groups

Finite groups can be reformulated utilizing
group representation theory to find coset
decompositions. This is illustrated on the
2 x 2 ~ 2 Cube. We use group representation
theory to represent f. r, and t as matrices:

r

I

0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

' 1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0

17

t =

‘ 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 - 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 - 1 0
0 0 0 0 - 1 0 0
0 0 0 0 0 0 1

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

These matrices are 7-dimensional,
corresponding to the 7 unsolved cubies. The
reformulation method consists of finding
eigenvectors of eigenvalue 1; these are the
invariants. Any invariant of all the actions is
irrelevant for the task, and can be removed, by
first changing the coordinate system so that
the invariant eigenvectors are axes, and then
projecting to the noninvariant subspace,
removing all irrelevant information at once. In
this case, the eigenvectors are:

* r:[],[]for h = 1, and []for h=-1

f:[i],[]for h = 1, and []for h=-1

t:[].[]for h = 1, and []for 1-1

and the common invariant eigenvector is:

[: I
Note that we have abbreviated the above

eigenvectors to save space: they are actually
7-vectors. We then change the basis, yielding
the new representations for r, f, and t:

r =

f =

t =

1 0 0 0 0 0 0
0 1 0 0 0 0 0

5 0 0 3 T O O 0
0 0 ~ ~ 0 0 6 0

2

0 0 0 0 1 0 0
0 0 0 0 0 0 - 1
0 0 0 0 0 - 1 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0

0 0 0
0 0 0 0 0 0 - 1
0 0 0 0 0 1 0
0 0 0 0 - 1 0 0

1 0 0 T -
0 0 7 - 2

2
6 -1

This procedure computes the irreducible
invariants of a group. The irreducible factors
of dimension 1. 1, 2. and 3 are found along the
diagonals of the matrices. Projecting to these
subspaces yields two interesting subproblems:

t = (; y)
1 - -7 2

On cubeiets 1, 2, and 3, the subgroup
generated is {i. r. f . 1. rt. tr}.

18

1 0 0

0 -1 0
r = [0 0 - 1 1 f =

t = [; i %)
0 0 -1
0 1 0

-1 0 0

On cubelets 4, 5 , 6, and 7, the subgroup
generated is

(i, r , f , t , rf, rt, fr, ft, tr , 11, rfr, rft, rtr, rtf,
frt, ftr, ftf, trf, tfr, rfrt, rftr, rftf, rtrf, rtfr}.

Using each set of matrices as generators,
we get two subgroups of actions, the second of
which is a faithful representation of the whole
group. The first subgroup moves cubies 1.2,
and 3, while holding 4.5.6, and 7 in position.
The second subgroup moves cubies 4.5.6, and
7 while holding 1.2, and 3 in their positions.
We then repeat this procedure on the first set
of actions to obtain a full set of prime factors
of the Rubik group.

These factors can be assembled in different
ways to form serial algorithms. There is more
than one way to decompose this group. This is
analogous to the different ways of multiplying
the prime factors of a number. Five serial
algorithms are obtained in this way. We now
examine two of them.

Seria l Algorithm 1:

1. One of (i,r,f) brings cubelet 3
into cubicle 3.

2. One of (i,t) brings cubelet 1 and
2 into their places.

3. One of (i, rtft) brings (4.6) and
(5.7) in the proper planes ('the
front face looks right').

4. One of (i, frtr) finishes the Cube.

The above figure is read right-to-left: solved
cubicles are shaded. "i" denotes the identity
(null) action. The average number of moves
required to solve the Cube in this way is 5.17.

Each step in the decomposition
corresponds to bringing a feature to its goal
value. Subsequent steps hold that value
invariant. In this way, sensory planning is
decomposed, Le., the agent need only sense
part of the Cube at each step. For example, the
first step solves cubicle 3. Knowing the colors
of the solved cubicle 8, we know the colors of
cubicle 3 - it has the same color as the bottom
of cubicle 8, and two new colors. There is only
one such cubie, and it must be in one of three
locations: in its goal position, or in cubicle 1
or 2. The agent need only look in those 3
locations to determine what action to take.
Once cubicle 3 is solved, it need not be sensed
again. The agent next solves cubicles 1 and 2:
i t need only sense either position to see if the
proper cubie is there: if so, it does nothing,
otherwise, it twists the top. Finally, the agent
uses macros to solve the remaining four
cubicles, by examining the front face to see if
it's a uniform color. and then examining the
top or right face to see it is of uniform color.

This reduction in the complexity of sensing
(the input requirements) is one of the salient
aspects of task decomposition. In large,
realistic tasks, it is not possible to fully sense
the world, e.g.. in a changing environment one
part of the world may change while t h e agent
is sensing another part. Even when possible, it
is often too expensive. A good decomposition
can greatly reduce the sensory expense. This
gain. however, is at the cost of suboptimality
of the solution. The above decomposition has
average cost of 5.17, whereas an optimal
solution is of average length 2.46. There are
better decompositions. We now examine the
best decomposition.

Serial Algorithm 2:

@@
19

1. One of (i.f,fr.ft) brings cubelet 6

into cubicle 6.
2. One of (i,r,rt 1 brings 3.7 in place

(bottom layer correct).
3. One of (i. t) finishes the Cube.

The average number of moves to solve the
Cube using this decomposition is 2.75.

Each decomposition can be thought of as a
coordinate system whose origin is the goal
state. For example, the second serial algorithm
can be thought of as a 3-dimensional
coordinate system (atb,c) where a is in
(i ,f .f t ,fr) , b is in (i , r , r t) , and c is in (i J) (Leo
Dorst produced the geometric interpretation of
this coordinate system):

tr

The first coordinate brings us to the proper
hexagon, the second coordinate to the proper
pair of opposing vertices in the hexagon, and
the third coordinate to the goal state.

In this coordinate system, each subproblem
is obtained by projecting onto that coordinate.
For example, projecting to the first coordinate
yields a 4-element state space whose states are
the hexagons. Reaching the goal state
(hexagon) in this space is equivalent to the
subproblem of bringing cubie 3 into its goal
location.

From the Rubik's Cube example, we see
that we can view a representation as a

coordinate system whose axes are the
components of the task. Using group
representation theory, we represent the actions
as matrices. Changing the basis so that
invariant eigenvectors are axes eliminates
irrelevant information, and identifies a good
task decomposition. We now formalize this
notion in a general way.

Coordinate Systems in
Transformation Monoids

We are interested in the structure of
transformation monoids, so a natural first step
is to examine Green's relations (Lallement,
1979). Green's relations are defined as
follows: given any semigroup S, we define the
following equivalence relations on S:

a R b iff aS' = bS'

a L b i f f S'a = S'b

H = R n L

D = R v L

a J b iff S'aS' = S'bS'

where S' denotes the monoid corresponding to
S with an identity element adjoined.

Intuitively, we can think of these relations in
the following way: aRb iff for any plan that
begins with "a", there exists a plan beginning
with "b" that yields the same behavior; aLb iff
for any plan that ends with "a", there exists a
plan ending with "b" that yields the same
behavior: aHb indicates functional
equivalence, in the sense that for any plan
containing an "a" there is a plan containing
"b" that yields the same behavior: two
elements in different D-classes are
functionally dissimilar, in that no plan
containing either can exhibit the same
behavior as any plan containing the other.

Let us examine these relations in a
representation for the Towers of Hanoi. Let Q
= (1,2,3,4,5,6,7,8,9) be the set of states for
the 2-disk Towers of Hanoi. Let A be the
semigroup of transformations generated by:

20

1 1 2 3 4 5 6 7 8 9
2 3 1 5 6 4 8 9 7

1 2 3 4 5 6 7 8 9

x = [

y = (4 8 3

"x" moves the small disk right one peg
(wrapping around from peg 3 to peg 1). and
"y" moves the large disk one peg to the left
(wrapping around from peg 1 to peg 3). Then
A is a semigroup with 31 elements. We name
this representation TOH1. Each element of A
is a partial function on the set of states.
Green's relations in A are:

xy, xyxxy, xyx, xyxxyx, xyxx, xyxxy
xyxxyxxy xyxxyxxyx xyxxyxxyxx I I I 1

I I I

where the R-classes are horizontal and the
L-classes are vertical. The D-classes model the
structure of the task representation, in the
sense that the n-th D-class is equivalent to the
n-disk Towers of Hanoi. Adding additional
disks merely adds additional D-classes. Each
D-class Dn contains the macros that move all
of the disks 1 through n.

Let us examine D2. There are three
subgroups in this D-class, containing the
idempotents (an idempotent is an element x
such that xx = x). The idempotents are in bold
type. These three H-classes are maximal
subgroups of A and their generators are the
macros for moving the large disk. Now we
define a coordinate system for any semigroup.

Definition. Let R be an R-class of a
semigroup, and let HA (he A) be the set of

H-classes contained in R. A coordinore
system for R is a selection of a particular
H-class, denoted H, contained in R, and of
elements qA. q', E SI with he A, such that
the mappings x + xq, and y + yq', are
bijections from H, to 4 and from H, to H,,
respectively. A coordinate system for R is
denoted by [HI: ((qk,q',): h E A)] .

This says to choose an H-class in a D-class,
and find 1-1 mappings to all other H-classes in
the same R-class. We are justified in calling
this a coordinate system for a D-class, as any
two representations of coordinate systems for
any two R-classes are isomorphic, giving 1-1
mappings to all the H-classes in the D-class
(Lallement, 1979, p.46).

This definition of coordinate system
provides an intuitive conceptual framework for
homomorphic reformulation. The groups in the
decomposition can be viewed as levels of an
abstraction hierarchy, or subproblems in a
serialization. Each such decomposition yields
a coordinate system, which is the index of the
group in the decomposition, together with the
indices given by the decomposition of the
group, as illustrated in Rubik's Cube. Change
of representation involves generating a
different decomposition for the given monoid,
and thus is a change of coordinate systems.
This fits perfectly with the intuition we
developed in the cylinder example.

A good example of such reformulation is
switching between serial algorithms for
Rubik's Cube. Such reformulation is performed
to match the unique characteristics of each
decomposition to the characteristics of the
agent and the requirements of the task, e.&.
serial algorithm 2 has a lower expected search
cost, whereas serial algorithm 1 never requires
sensing cubicle 5.

Each coordinate system generates a Rees
matrix representation for A, permitting us to
change basis within a semigroup and find
serial algorithms in a manner analogous to the
Rubik's Cube example. The reader is referred
to Lallement (1979) for details of Rees matrix
representations. Unfortunately, application of
this technique to general semigroups can be
very expensive computationally. Even the

21

decomposition of small semigroups may
require a large number of groups. The minimal
number of groups required for a decomposition
of a given semigroup is called the group
complexity of that semigroup. It is not known
whether the group complexity is decidable.
This makes i t very difficult to design good
algorithms for finding such decompositions.

Even more seriously, this form of
representation change is not fully general.
Homomorphic reformulation techniques
elucidate the structure of a transformation
semigroup, and thus possess a serious
limitation: they can only preserve the structure
of the semigroup, which limits the components
they can produce. Such techniques can only
remove extraneous information to uncover
existing structure in a given representation. If
this structure is not appropriate for efficient
problem-solving, then homomorphic
reformulation will be of little use.

For example, in ABSTRIPS (Sacerdoti.
1974) the relevant predicates must already
exist in the initial representation, or else
numbers cannot be assigned to them. Another
example is provided by Subramanian's work: if
the theory is stated in such a way that the
irrelevant information is distributed among the
statements of the theory, rather than
concentrated in a subset of the statements,
then it cannot be dropped without rendering
the theory incapable of solving the task. TOH2
is such a representation.

For these reasons, we utilize the technique
described in this section only within group
machines. In the next section, we will show
how to extend this technique to handle a wider
class of semigroups - inverse semigroups.

Related Work

Reformulating tasks in this way has been
described in various ways in the literature.
Sacerdoti (1974). Knoblock et al. (1990). and
Unruh & Rosenbloom (1989). among others,
describe this reformulation as building an
abstraction hierarchy. For example, in
ABSTRIPS an ordering was imposed on the
state-description predicates: bringing the
predicates to their goal values in this order

was viewed as top-down search in a hierarchy
of abstract problem descriptions.

Niizuma & Kitahashi (1985) and Banerji &
Ernst (1977) describe this reformulation as
projecting the states. In this view, an
equivalence relation is imposed on the states,
and the equivalence classes are the states in
the quotient space. The only actions retained
in the new representation are those that move
between equivalence classes.

Zimmer (1990) and Benjamin et al. (1990)
describe this reformulation as decomposing the
actions. In this approach, the set of sequences
of actions is decomposed into two sets: those
that are most relevant (according to some
criterion) for solving the problem, and those
that are less relevant. This induces an
equivalence relation on the set of states, as in
the previously described approach: a
difference is that sequences of actions
(macros) are used, rather than actions. The
decomposition procedure is then repeated on
the less relevant actions.

A similar approach is taken by
Subramanian (1987). who drops statements
from a theory if the reduced theory can still
derive the goal statement: the dropped
statements are considered irrelevant. In these
approaches, the state space is reduced by
removing states that can no longer be reached
by actions (statements) retained in the
representation (theory). These approaches
differ from the state projection approach
mainly in the order in which states and actions
are reformulated. In the state projection
approach, a feature is 'chosen, inducing an
equivalence relation that factors the states and
decomposes the actions. In the action
decomposition approach, the sequences of
actions are decomposed according to some
criterion, e.g., irrelevance (Subramanian) or
enablement (Benjamin). which induces an
equivalence relation on the states.

Korf (1983) and Riddle (1986) describe
this reformulation as serializing the subgoais.
Finding a set of serializable subgoals for .I
problem permits solution of the problem $ L

solving each subgoal in order. Korf points o J t
that this reduces the exponent of the search,
possibly resulting in a big gain in efficiency.

22

Most of these authors refer to this type of
reformulation in more than one of the above
four ways. Also, this is not an exhaustive list
of work on this type of reformulation. In the
remainder of this paper, we refer to this type
of representation change as homomorphic
reformulation, as in Lowry (1990).

The General Reformulation Problem

Homomorphic reformulation changes the
presentation of a semigroup, thus
"re-presenting" it. The toughest cases of
reformulation occur when the necessary
problem-solving structures do not already
exist, and involve transforming the semigroup
into a transformationally equivalent semigroup
with the desired structures. We call this the
general reformulation problem. In keeping
with our intuition that homomorphic
reformulation is a coordinate change, we call
non- homomorphic reformulation a
deformation. because it changes the structure
of the set of actions. ..

We begin our examination of the general
reformulation problem by describing a
representation for the Towers of Hanoi that
lacks good decompositions. We then define
transformational equivalence, and give an
algorithm for computing transformational
equivalence for a useful class of semigroups.

An Example: TOH2

In TOH2, the only feature available to the
agent is what disk is on top of each peg. This
is a sound and complete theory of the 2-disk
Towers of Hanoi, just as TOHl is. The search
complexity of this representation is exactly the
same as for TOH1, because the states are the
same, the same number of actions are
executable in any state, and the solutions are
of the same length. Thus, we see the
insufficiency of logical completeness,
soundness, and worst-case complexity for
evaluating representations.

The actions of TOH2 do not mention the
disk that is moved, and no abstractions can be
generated. We cannot find an abstraction
hierarchy that first solves the large disk, then

the small disk, because the set of actions
cannot be partitioned into moves for each disk.
Certainly the agent can first bring the large
disk to the goal peg, then the small disk, but
as was pointed out earlier, there is no structure
in this representation of the set of actions that
can be used to find that subgoal ordering, and
the set of actions has no decomposition. No
matter how we project these actions, we end
up with all six of them. Thus, we cannot apply
the type of reformulation we applied to the
cylinder or to Rubik's Cube. N o
re-presentation of this transformation monoid
will help: we need a new monoid of actions.

This is a different semigroup than i n
representation TOH1, and that its structure
does not reflect the structure of the task in as
helpful a manner. Relevant distinctions are not
made, e.g., between moving the larger disk
from pegl to peg2 and moving the smaller disk
between pegl and peg2; irrelevant distinctions
are made, e.g., between moving a disk from
pegl to peg2 and moving the same disk from
peg2 to peg3.

This semigroup possesses only trivial
(one-element) subgroups. We must find a way
of transforming this semigroup to a better one.

Transformational Equivalence

Although the representations TOHl and
TOH2 are structurally dissimilar, they both
have the Towers of Hanoi as a model, and thus
map the states of t he Towers of Hanoi in a
logically equivalent fashion. We state this
precisely with the following definitions:

Definition. Given two semigroups S I and S2
acting on Q1 and 4 2 , respectively, a
function f Q1 + 4 2 is said to be a
transformational reduction if for all p.q E
Q1. if q is reachable from p via S 1 then
f(q) is reachable from f(p) via S2.

Definition. Two semigroups S 1 and S2 acting
on Q1 and 4 2 , respectively, are said to be
transformationally equivalent if there exist
transformational reductions f Q1 + 4 2

and g: 4 2 + Q1.

2 3

The preservation of reachability guarantees
that any solution in one representation is a
solution in the other. We will call a
transformational reduction a t - reduct ion . and
transformational equivalence will similarly be
called a t -equivofence. Semigroup morphisms
are t-reductions; however, not all t-reductions
are semigroup morphisms. For example, TOHl
and TOH2 are t-equivalent, but there are no
semigroup morphisms between them (there can
be no function from A 1 and A2. or from A2 to
Al .) Neither is a simulation or abstraction of
the other.

Computation of t-reductions can be
extremely expensive. By restricting
(specializing) and combining (by disjunction)
elements of the semigroup A2 of
representation TOH2. we can transform A2 in
a general way to obtain any semigroup of
actions that transforms 42 i n a similar manner;
however, the number of ways of transforming a
set of partial functions in this way is
hyperexponential i n the number of elements of
A2. To make this problem tractable, we
proceed by investigating one class of
semigroups at a time. We examine the
structure of semigroups of that class, and
construct an algorithm that transforms that
structure into t-equivalent semigroups of a
class with superior computational properties.
In the next section, we will describe such an
algorithm, which transforms inverse
semigroups into t-equivalent groups.

Transforming Inverse Semigroups
into t-equivalent Groups

As we have seen, finite group
representations possess an excellent matrix
representation theory that permits efficient
computation of serial algorithms. Finite group
representations also possess another very
useful property: all the actions in a
transformation group are totally defined. The
absence of partially defined actions means that
there are no constraints on application of
actions, and therefore a problem solver need
not test actions for applicability when
generating and testing possible actions. In the
AI literature, this is referred to as "embedding
the constraints in the generator." Testing

partial actions is responsible for much of the
time spent by search algorithms. For example,
a production system spends much of its time
attempting to instantiate rules that do not fully
match. Thus, if a task admits a group
representation, it is very desirable to find that
representation. Consider a task that admits an
inverse semigroup representation.

Definition. A semigroup S is an inverse
semigroup if for any element a of S, there
exists an element b of S such that aba = a.

Many interesting tasks admit inverse
semigroup representations, including many AI
tasks, e.g., the Towers of Hanoi, Rubik's Cube,
the Missionaries and Cannibals, Fool's Disk,
the Blocks World. and the 8-Puzzle. Also
included are many motion and assembly tasks,
e.g., parking a car. Intuitively, a task admits
an inverse semigroup representation if it is
true that whenever any sequence of actions s is
performed in a state q , there exists a sequence
of actions w that will return to state q.

We state the following theorem, but omit
the lengthy proof to save space.

Theorem. Any task admits a finite inverse
semigroup representation iff it admits a
finite group representation.

In the next section. we will illustrate the
procedure for transforming inverse semigroups
to groups with two algorithms, which form the
core of the proof of the theorem.

Algorithms

The transformation of inverse semigroups
into groups is illustrated on various
representations for the Towers of Hanoi.

Reformulating TOHl

Consider D2 of TOHl. The primitive
idempotents are in nontrivial subgroups. The
reformulation algorithm in this case is:

Compute Green's relations.

Find the primitive idempotents.

24

Find the generators of the
corresponding subgroups.

Select a coordinate system
originating at one of the subgroups.

Map each generator and all its
corresponding generators under the
coordinate system to one new label.

The primitive idempotents are shown in
bold type in Figure 12.The generators of the
subgroups are xxy, xyx. and yxx. The
renaming process in this case just relabels
these three to one new label, forming the
disjunctive macro:

Define z = case (

little disk left of large disk: xxy
X Y X

little disk right of large disk: yxx)

little disk on large disk:

This new aotion is globally applicable, and
moves the two disks so that their relative
position is unchanged. The identification of
"the relative position of the two disks" as the
discriminating feature is not addressed in this
paper: it will be addressed in part 2, which
will deal with the syntactic aspects of
reformulation. The present paper is concerned
only with the functions that features must
compute, not with the formulae for computing
these functions.

This construction gives a partial morphism
from A to a group generated by z, with the
relation zzz = 1. This partial map is defined
only on the nine elements contained in the
three group H-classes. Any such partial map
can be extended with the identity map on all
totally defined actions. In TOH1, this means
mapping the action "x" to itself, giving a
group G, generated by x and z, with the
relations x3 = 1, 2' = 1, xz = zx. In this case.
the result is a total morphism on A.

I I

As this group is abelian, the set of actions
of the Towers of Hanoi then decomposes in
two ways:

+ executing the z macro the
necessary number of times to solve
the large disk, then

executing "x" the necessary number
of times to solve the small disk;

+

or :
executing "x" the necessary number
of times to solve the small
then

+ executing the z macro
necessary number of times to
the large disk.

These decompositions do not

disk,

the
solve

lead to
optimal solutions (they can be improved by
including both right and left moves for both
disks); however, they possess the usual
advantage of task decompositions: they clarify
and simplify the task, leading to reduced
sensing and planning time. The partiality of
the actions in TOHl is encapsulated within
macros in this new representation, thereby
eliminating subgoal interference by moving
the constraints to the generator.

Reformulating TOH2

Consider TOH2. The groups containing the
primitive idempotents are all trivial. In this
case, a reformulation algorithm is:

.2 5

Compute Green's relations.

1 G2

1 1

V V

V ' v 2

Find the primitive idempotents.

Find a minimal word x1x2x 3 . . . ~ m for
one of the primitive idempotents.

Map the set of functions
xIx2x ,... x,x,. x2x3x ,... xmx1x,. etc. to
one new symbol.

v 6

3 6
V V

I
V

4
V

8 v s v

All the primitive idempotents are mapped
to the identity function. All primitive
idempotents can be found by cyclically
permuting a minimal word for a primitive
idempotent. Also, this word gives a cycle of Q
(executing the actions of the word visits each
state of Q exactly once). We restrict these nine
functions to single states by multiplying on the
left by the appropriate primitive idempotents,
and then map these nine functions to one new
symbol v, giving a cycle that visits each
element of Q exactly once, so that each v is a
counterclockwise arrow around the state graph
for the 2-disk Towers of Hanoi.

Notice that three of the elements of the
original semigroup are not mapped: they are
not necessary for reachability, but only for
efficiency. This gives a cyclic group G, of
order 9 generated by v, which decomposes into
two cyclic groups of order three:

I I

Once again, these actions are totally
defined, so subgoal interference has been
eliminated and constraints have been hidden
by encapsulating them in macros.

This is isomorphic to the group found in
the previous example from TOH2, with z = v3,
and x = v2. But this group representation is not

related to the group representation from TOHl
by a homomorphism ,of transformation monoids
That this is so is evident from the way the two
groups map the states. Group G, maps state 1
into state 3 via action x2. but G, maps state 1
into state 4 via action v2. This shows that
non-homomorphic transformation groups can
exist in the category of representations for a
task. Although these two groups are
isomorphic as abstract groups, they possess
different computational properties when acting
on the states of the task, e.g.. the average path
length between any two states in G, is shorter
than in G,. The morphisms of transformation
monoids distinguish properly between these
two representations, thus illustrating the
usefulness of the formalism for reasoning
about representations.

Summary

We have described a research program
pursuing an algebraic approach to reasoning
about representation change. There are three
advantages to this approach. First, i t ties in to
an existing theory of semigroups that is
general and intuitive. We hope that this paper
has demonstrated the intuitive advantages of
this approach, particularly in the use of
coordinate systems to characterize
reformulation.

Second, we can use this theory for
classification. We classify representations by
the structure of their transformation monoids,
and classify tasks according to the
representations they admit. We can also
classify representation changes. For example,
we have classified reformulations as
coordinate transformations if they transform
the presentation of the transformation monoid,
and as deformations, if they transform the
structure of the monoid.

Third, we can use this theory to construct
algorithms for representation change. For
example, we showed how to use group
representation theory to automatically abs: r :
a group representat' 'IS. and we showed ho
move constraints . o m the tester to
generator for inverk semigroups.

26

This paper has dealt with the semantics of
representation change, as embodied i n the
structure of semigroups of actions. Part 2 will
deal with the agent-dependent features used to
encode states and actions, which are embodied
in strings of symbols over alphabets.

Acknowledgments

This work has benefited greatly from
discussions with Ranan Banerji, Leo Dorst,
Jonathan Hodgson. Indur Mandhyan, and
Madeleine Rosar. Leo and Madeleine did much
of the work on Rubik's Cube.

References
Amarel, Saul, (1968). On Representations of

Problems of Reasoning about Actions, in
Michie (ed.) M a c h i n e In te l l igence . chapter
10, pp. 131-171. Edinburgh University
Press.

Arbib, Michael A.. and Manes, Ernest G.,
(1974). Machines in a Category: An
Expository Introduction, SIAM Review,
Vo1.16, No.2, pp.163-192, April, 1974.

Banerji, Ranan B. and Ernst, George W.,
(1977). A Theory for the Complete
Mechanization of a GPS-type Problem
Solver, IJCAI-77, pp.450-456.

Benjamin, D. Paul, Dorst, Leo, Mandhyan,
Indur, and Rosar, Madeleine, (1990). An
Introduction to the Decomposition of Task
Representations in Autonomous Systems,
in "Change of Representation and
Inductive Bias", D. Paul Benjamin (ed.),
Kluwer Academic Publishers.

Bobrow, Leonard S., and Arbib, Michael A.,
(1974). Discrete Mathematics, Saunders.

Chomsky, N., (1957). Syntactic Structures,
Mouton, The Hague.

Dorst, Leo, (1989). Representations and
Algorithms for the 2 x 2 ~ 2 Rubik's Cube,
Philips Technical Report TR-89-041.

Doyle, Jon, and Patil. Ramesh S., (1991). Two
theses of knowledge representation:
language restrictions, taxonomic
classification. and the utility of
representation services, Artificial
Intelligence 48, pp. 261-297.

Eilenberg, Samuel, (1974). Automata,
Languages, and Machines, Volumes A&B,
Academic Press.

Howie. J. M., (1976). An Introduction to
Semigroup Theory, Academic Press.

Knoblock. Craig A., Tenenberg, Josh D., and
Bng, Qiang, (1991). Characterizing
Abstraction Hierarchies for Planning,

Korf, Richard E., (1983). Learning to Solve
Problems by Searching for
Macro-Operators, Ph.D. Thesis,
Carnegie-Mellon University.

Lallernent, Gerard (1979). Semigroups and
Combinatorial Applications, Wiley &
Sons.

Lowry, Michael, (1990). Homomorphic
Reformulation, Proceedings of the Second
International Workshop on Problem
Reformulation, Price Waterhouse, Palo
Alto, California.

Lowry, Michael, (1987). Algorithm Synthesis
Through Problem Reformulation,

AAAI-91.

AAAI-87.
Niizuma, S. and Kitahashi, T., (1985). A

Problem-Decomposition Method Using
Differences or Equivalence Relations
between States, Artificial Intelligence 2 5,

Riddle, Patricia J., (1986). Exploring Shifts of
Representation, in Mitchell, Carbonell, and
Michalski (eds.). Machine Learning: A
Guide to Current Research, Kluwer.

Sacerdoti, E., (1974). Planning in a Hierarchy
of Abstraction Spaces, Artificial
Intelligence 5(2), pp.115-135.

Simon, H.A., (1969). The Sciences of the
Artificial, MIT Press, Cambridge, Mass.

Subramanian, Devika, and Genesereth, M.R.,
(1987). The Relevance of Irrelevance,

Unruh, Amy, and Rosenbloom, Paul S., (1989).
Abstraction in problem solving and
learning, IJCAI-89, pp.681-687.

Zimmer, Robert M., (1990). Representation
Engineering and Category Theory, i n
C h a n g e of Representat ion and Induct ive
B i a s , D. Paul Benjamin (ed.), Kluwer
Academic Publishers.

pp. 1 17- 15 1.

IJCAI-87, pp.416-422.

27

<- -5-63
Benne:

’ .

’ Specification Reformulation During Specification
Validat ion

Kevin M. Benner
USC / Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

BennerOisi .edu
(310) 822-1511

Abstract
The goal of the ARIES Simulation Component
(ASC) is to uncover behavioral errors by “run-
ning’’ a specification at the eariiest possible points
during the specification develoornent process. The
problems to be overcome are the obvious ones -
the specification may be large, incomplete, un-
derconstrained, and/or uncompilable. This paper
describes how specification reformulation is used
to mitigate these problems. ASC begins by de-
composing validation into specific validation q u e
tions. Next, the specification is .reformulated to
abstract ou t all those features unrelated to the
identified validation question thus creating a new
s’pecialized specification. ASC relies on a precise
statement of the validation question and a care-
ful application of transformations so as to pre-
serve the essential specification semantics in the
resulting specialized specification. This technique
is a win if the resulting specialized specification is
small enough 90 the user may easily handle any
remaining obstacles to execution. This paper will
(1) describe what a validation qnestion is, (2) out-
line analysis techniques for identifying what con-
cepts are and are not relevant to a validation ques-
tion, and (3) identify and apply transformations
which remove these less relevant concepts while
preserving those which are relevant.

Introduction
Validation at the requirements level is often character-
ized as validation with respect to the client’s or stake-
holder’s intent. The goal of specification validation is
to identify those aspects of the specification which do
not conform to the client’s intent and then to make a p
propriate changes. More practically, this boils down to
uncovering bugs in the specification and fixing them.
The goal of this work is to address a specific subclass
of specification errors that have not previously been
satisfactorily addressed. In particular, this work ad-
dresses identifying errors in the dynamic behavior of
a high-level specification. This work will distinguish

itself from related works by being able to handle large,
very-hiqh-level specifications. This is done by making
expi:r : specific validation questions which focus vali-
dar xtivities sufficiently enough 90 that traditional
vahq .m techniques, like simulation and direct exe-
cutir ire tractable.

Thr problem of identifying errors in the specifica-
tion and the cost of finding these later during the de-
velopment process is well documented [Boehm, 19811.
Among these errors, the moet difficult to identify early
on are those which concern behavior. In general these
include: (1) inconsistency between specification com-
ponents, (2) incompleteness with regard to known sce-
narioe, and (3) inconsistency between requirements
and their realization in the specification.

The work describe herein will uncover behavioral er-
rors by “running” a specification at the earliest PO%
sible points during the specification development pro-
cetm. The problem to be addressed are the obvious
ones - the specification may be large, incomplete, un-
derconstrained, and uncompilable. These problems are
addreseed via a four step process. First, the validation
activity is decomposed into specific validation ques-
tions. Second, the specification is reformulated to ab-
stract out all those features unrelated to the identi-
fied validation question thus creating a new specialized
specification. Third, the specialized specification is ex-
ecuted with the purpose of proving or disproving the
validation question. And finally fourth, since the spe-
cialized specification was constructed in a disciplined
manner, one may now infer the result of the validation
question about the original specification.

The general feel of the interaction is more like a
debugging sessions, particularly early in the develop
ment. The goal is to get something running quickly
and easily 90 as to reveal behaviors implied by the
specification and make them accessible to end users
and stake holders for early validation (or more likely,
early error identification). During a typical validation
session, the specialized specification and its validation
question are executed. The simulation system using
the validation question will guide the execution toward
satisfaction of the validation question. When this is

20

not possible the simulator will point out how the val-
idation question has been violated. The stake holder
and analyst will observe the execution. When a valida-
tion question is not satisfiable, the analyst will be able
to explore the behavior space to understand why this
is the case. Appropriate changes may then be made to
the specification and the specialized specification con-
struction process replayed. This is then followed by
re-execution of the specialized specification. Naturally
this process may be repeated.

The abstraction or reformulation process employed
during specialized specification construction is the
heart of the ARIES Simulation Component(ASC, pro-
nounced “ask”). It relies on a precise statement of
the validation question and a careful application of
transformations so as to preserve the essential speci-
fication semantics in the resulting specialized specifi-
cation. This technique is a win if the resulting spe-
cialized specification is small enough so that the user
may easily handle any remaining obstacles to execu-
tion. This paper will (1) describe what a validation
question is, (2) outline analysis techniques for iden-
tifying what concepts are and are not relevant to a
validation question, and (3) identify and apply trans-
formations which remove these less relevant concepts
while preserving those which are relevant.

The work described in this paper is a component of a
larger effort called ARIES [Johnson et al., 1991) which
is concerned with the overall task of requirements ac-
quisition and specification development and validation.
Requirements may be stated informally and then grad-
ually formalized and elaborated. Validation is facili-
tated via a variety of graphical and textual presenta-
tions. Elaboration and refinement are supported via
evolution transformations. Additionally, mechanisms
for reuse and concept encapsulation have been pro-
vided.

The example used throughout this paper is drawn
from the air traffic control domain, specifically behav-
iors concerning handof- passing control of an aircraft
from one air traffic controller to another. Some of the
concepts included in the full specification are: control,
physical location, sensors, tracks, maintaining tracks,
flight plans, aircraft movement, agents within the air
traffic control domain. etcetera.

Validation Questions
At the beginning of the requirements acquisition pro-
cess, many requirements are not easily expressed as ab-
stract, concise, declarative statements of stake-holder
needs. Rather at this point, requirements are often
more easily expressed informally as a mix of situations
and experiences which the stake-holder wishes to have
handled by the system to be specified.

Informally, a validation question is any question a
user or stake-holder may have about the specified sys-
tem. It could encompass anything he/she believes to
be pertinent. The goal of a validation question is to

provide a means to ask these questions. Fundamen-
tally, validation questions are statements of user’s or
stakeholder’s requirements. They are stated in a rnan-
ner as similar as possible to the way they are manifest
in the user’s or stakeholder’s real world. And they
hopefully have little dependence on how these require
ments may be realized in the specification. This section
will show how these goals are attained by allowing the
stake-holder to express his/her requirements via the
following constructs: scenarios, to describe partial or-
derings of states and events using both abstract and
concrete concepts, and assumptions, to support the
implicit assumptions common in natural language and
often used when stakeholders describe their needs.

Consider the following natural language questions.
They are the intuitive basis from which we will evolve
formal validation questions.

VQ-1: Does handoff occur before the aircraft moves
from its current airspace to an adjacent airspace?

0 VQ-2: Once in-route to a particular location, is con-
trol maintained throughout?

0 VQ-3: Will the system recognize when an aircraft is
out of conformance with its flight plan?

Figure 1: Some Informal Validation Questions

The above questions illustrate several important
characteristics of validation questions. First, valida-
tion questions often implicitly rely on scenarios and
assumptions to provide a narrowed context. Second,
validation questions often use concrete and/or qualita-
tive instances to focus on specific, relevant attributes
of the specified system. And finally third, validation
questions often embody some expected interaction that
the analyst is trying to stress. The remainder of this
section will describe how validation questions are de-
scribed in terms of scenarios and assumptions.

Scenarios
Scenarios are a partial ordering of events and/or states.
They allow one to describe a complex sequence of activ-
ities at an arbitrary level of detail without necessarily
making commitments regarding their causal relation-
ships.

This section will define the semantics of a scenario
with respect to state transition diagrams’. The spe-
cific semantics is determined by the scenario mode.
Alternatives include comparative, restrictive, or pre-
scriptive. The mode is selected by the analyst dur-
ing formulation of the validation question. Each mode
constrains the behavior space of the specification in a
progressively more restrictive manner.

‘Other notations for scenarim are also available and are
often used. They are isomorphic with STDs.

29

0 Comparat ive has no effect on the behavior space
of the simulated specification, but acts as a watch
dog informing the user as to the satisfaction or par-
tial satisfaction' of a scenario during simulation. In
this case satisfaction of a node determines the cur-
rent node. The current node is neither necessary nor
sufficient to advance to the next node.

0 Restrictive means that nondeterminism within the
behavior space is pruned so that if the scenario may
be satisfied it will be. Basically, satisfaction of each
node is necessary but not sufficient to advance to
a following node. Informally this mode is best de-
scribed as a procedural invariant.
Prescriptive means that the simulator advances
the scenario from one node to the next irrespective of
the state of the simulation. More formally, the sim-
ulator treats the satisfaction of a node as necessary
and sufficient for advancing to the next node. O p
erationally, advancing to a transition node implies
that the corresponding event is invoked. When the
event is completed the following state node is made
true.

Main validation question The validation question
labeled as VQ-1 in figure 1 is formalized as the state
transition diagram shown in figure 2. States wifhin-sI
and within-s2 are the qualitative values for the aircraft
being in sectors s l and. 8% respectively. Transitions
handoff and aleri-controller represent the events of the
same name and the following states represent comple-
tion of these same events. Transitions m-1 and m - t
represent any event that would result in the final state
within-st . During simulation, ASC will drive this state
transition diagram to reflect the state of the.s imuh
tion. If an illegal transition occurs the analyst will be
informed.

The goal here has been to express typical, critical
situations that the user wants to be sure are handled
in a specific way. This could have been done in terms
of concept at any level of abstraction. Typically as
the specification moves closer to completion, the val-
idation question may become more complex and may
be expressed in terms of lower-level concepts.
Driving scenarios Driving scenarios are prescrip
tive scenarios, typically used to model actions outside
the scope of the current specialized specification. Fig-
ure 3 shows two driving scenarios that are used within
this example. The driving scenario commits to manage
specific concepts. In this case thoee concepts are frack-
position and the qualitative values derived from track-
position (e.g., top-of-block-altitude and within-accept-

'Satisfaction of a state means the predicate d a t e d
with the state is true. Satisfaction of a transition means the
event associated with the transition han been invoked. Sat-
isfaction of a scenario means that the states and transitions
of the scenario have been satisfied in the order specified by
the scenario.

Figure 2: Validation Question - VQ-Handoff

handofl-computed-point-distance). When a driving sce-
nario manages a concept it supersedes all other speci-
fication concepts which attempt to influence the same
concept. This information will be used later during
specification reformulation.

procedure DSLEVEL-S()
:= step(

inwrt within-sl r l ;
inrrt topof-block-altitude ul;
delry0;
inwrt enter-new-urspue r l)

procedure DSLEVEGI()
:= step.(

inrrt within-sl r l ;
inwrt topof-block-altitude ul ;

inwrt within-accept-hmdoff-computed-point-distance r l ;
insert within-s2 u l)

del.yO;

Figure 3: Driving Scenarios for VQ-Handoff

The level of abstraction at which driving scenarios
operate is one of the primary influences on the level
at which simulation will be done. Instead of driving
track-position, the analyst could decide to drive sensor-
reports. This would result in a larger, more detailed
specialized specification which would include process-
ing of sensor-nports into tracks.

Scenarios to constrain nondeterminism Specifi-
cations are highly underconstrained, particularly early
in their development. ASC allows one to execute a
specification in spite of this by providing various mech-
anism to constrain the nondeterminism within the con-
text of a validation question. One of these mechanisms
is s restrictive scenario which acts as procedural con-
straint on the behavior space.

One example of this is the Handof transition in fig-
ure 2 . Handoff is not actually an event but rather a
restrictive scenario which is constraining the simula-
tion to only consider handoffs consisting of an.initiate
and accept phase (see figure 4). This scenario pre-
cludes handoffs from being canceled or rejected. More

30

complex scenarios would deal with this after first per-
forming validation on this simpler case.

scenario hsndoff(ac:track)
:= stcpr[

automatic-init-handoff(ac);
accept-handoff(sc, any controller, any controller)]

Figure 4: Restrictive Scenario

Ass urn p t ions
Assumptions allow the analyst to codify what are often
implicit assumptions made by developers as they build
rapid prototypes. The advantage of this approach is
that it documents said assumptions. Once recorded,
the analyst can now separately validated the assump
tions with stakeholders within the context of the cur-
rent validation question. This way the analyst can be
sure that assumptions do not trivialize the basic intent
of the validation question. A later section of this paper
will show how assumptions are used during specifica-
tion reformulation.

In general, formally showing whether or not one con-
cept effects another is undecidable. Even at an infor-
mal level, causality is a vary hard problem. Influences
finesse this issue by relying on rules which are easily
computable and which generate all potential influences
rather than making claims about actual influences. As
such, the resulting influence graph should be consid-
ered a conservative representation of concept influences
- that is they may indicate influences which are not ac-
tually possible, but are safe, in that they will not fail
to indicate the presence of an influence that does exist.

Once the initial influence graph is generated, more
knowledge intensive approaches are applied to remove
many of those potential influences which are not actual
influences.

Another problem in extracting the influence graph
is that influence paths could be through arbitrarily
many intermediaries and in an incomplete specifica-
tion would be inherently suspect. Rather than deal
with this problem, ASC allows the analyst to limit the
path length it will look at during analysis. Granted
this has the horizon effect, but this can be minimized.
(see section Horizon Effect Addressed)

invariant FIXED-SET-OF-TRACKS
for-all (t1:trsck) element-of(t1, {scl, acZ})

Influence Definition
Figure 5: Assumption for VQ-Randoff

Assumptions are expressed a8 invariants. Figure 5
contains one of the assumptions used in the current
example. Since we are not validating track-processing,
we can relax some of the constraints on tracks and for
now constrain the number of tracks in the simulation
model. Acl and ac2 are defined as tracks in an un-
shown initialization scenario.

Influence Analysis

The previous section described how a validation ques-
tion is formalized. This section will show how the
validation question is used to reformulate the current
specification into a specialized specification which is
simulatable. We begin with influence analysis.

Brooks in [Brooks, 19861 warns that descriptions of
software that abstract away its complexity often ab-
stract away its essence. Influence analysis is a means
of allowing the analyst to see through this complexity
to distinguish between concepts which are most rele-
vant to the validation question and those which are not.
Once identified, ASC provides reformulation transfor-
mations which remove those concepts which are not
relevant.

An influence identifies the conduits through which one
concept effects another during execution. ASC divides
these conduits up into three classes: information, con-
trol, and miscellaneous. This section will informally
characterize each of these classes and then illustrate
them via an example. ASC has operationally formal-
ized these concepts based on the specification language
Reusable Gist [Johnson and Feather, 19911.

0 Information influences are concerned with the
flow of information between concepts. Stated an-
other way, when information changes, how does it
percolate through the system? Some examples of
these types of influences are: database updates, as-
signment statements, and definitional use of data
declarations (i.e., relations, types, and instances) by
other data declarations.

0 Control influences are concerned with if and when
behaviors may occur. Some examples of this clam of
influences are preconditions on an event, invocation
of an event, invariants, and conditional statements
(Note, granularity of influences is at the level of dec-
larations. Thus influences on or by statements are
reflected as influences on or by the event which con-
tains the statement).

0 Miscellaneous influences are concerned with in-
fluences on and by the the validation question. Most
influences are onto validation questions with driving
scenarios being the exception.

31

Figure 6 is the Reusable Gist definition of the event
accept-hand08 Figure 7 shows a paraphrase of this
event. The resulting primitive influence graph is shown
in figure 8.

Demon ACCEPT-HANDOFF(trwk,
current-controller:controller,
receiving-control1er:controller)

precondition controlled(track, current-controller) and
handoff-in-prognu(t rack,

current-controller,
receiving-controller)

pomtcondition contmlled(trwk, receiving-controller)
.= rtepo(track.controlled - receiving-controller;

remove handoff-in-progreu(traclc,
current-controller,
receiving-controller);

track.trwk-rtatur - 'normal)
Figure 0: Reusable Gist definition of the event Accepi-
Handoff

Figure 7: Paraphrase of the event Accept-Handoff

The influence graph of figure 8 is most similar to
de Kleer's mechanism graph from his work in qualitb
tive reasoning [de Kleer, 1986; de Kleer and Brown,
19861. The mechanism graph shows the causal influ-
ences between concepts. A vertex contains an infor-
mation value which represents a specific circuit com-
ponent attribute (e.g. the voltage or current at a given
component). Edges represent how a change in a vertex
value is propagated to adjacent vertices. Edges are d o
rived from either component models or domain specific
heuristics. In influence graphs, a vertex represents a
specification concept declaration (or fragment). Edges
represent how a concept influences either the behavior
or value of another concept.

The influence graph (figure 8) shows most of
the immediate influences on and by accept-hand08
Receiving-controller, cumni-controller, and imck are
parameters of the event. Enabling-pred-of-accepi-

hand08 is a composite node representing the precon-
dition of the event. Controlled, and, and handof-in-
progress are relation referenced by the event. Edges
within the graph represent the direction in which in-
fluences are propagated. Note that how each influ-
ence effects a given node is not represented. This is
in fact outside the capability of influence analysis in
ASC. None the less, this still provides a great deal of
information to the analyst when creating a specialized
specification as we will see later.

Figure 8: Primitive Influence Graph of the event
accept-handoff

Automated Graph Abstraction
Though the graph in figure 8 could be used as is, it
shows many influencea which really do not drive the
dynamic behavior of the specification. This section will
describe some of the influence abstraction rules which
are applied automatically by ASC. Figure 9 shows the
resulting influence graph. It is this graph, not the pre-
vious one, which the analyst is first shown after influ-
ence analysis.

Figure 9: Influence Graph of the event accept-handoff

Below are some of the abstractions which are aut+
matically applied during influence analysis.

32

0 Remove influences on self.
0 Remove influences from concepts in the Predefined

0 Remove static concepts which have no influences on

0 Remove variables and parameters which are not ex-

Interactive Graph Abstract ion
Not all abstractions can be done in an automatic fash-
ion. Typically, the presence of certain influences indi-
cate either an error in the specification or an opportu-
nity to apply an abstraction. The analyst must make
these decisions. ASC identifies these cases during au-
tomatic influence abstraction and then posts notifica-
tions via an agenda mechanism. When the analyst is
ready, he/she may view the agenda and the alterna-
tive actions recommended by ASC. Recommendations
typically include suggested transformations which can
cause the desired effect in either the evolving special-
ized specification or the underlying specification. Some
of these interactive suggestions are:

0 When there are no influences on a type or relation
declaration, suggest that the concept should be de-
clared static.

0 When there is an influence on a type or relation dec-
laration, suggest that the concept should be changed
t'o dynamic (e.g., explicit or derived relation).

0 When an influence node has only a single input in-
formation influence and only a single output infor-
mation influence, suggest that the intermediate node
be abstracted out and the input and output nodes
be modified to be a direct influence.
For validation question VQ-Handoff of figure 2, in-

fluence analysis results in 224 influence nodes. After
automatic abstraction this count is reduced to 97 influ-
ence nodes with 51 posted suggestions (most of which
concern suggestions on declaring concepts as dynamic
or static). After the analyst handles the most obvious
suggestions, the influence node count is reduced to 77.
Though an improvement over the starting point of 224
concepts, there are still a lot of concepts to compile for
simulation.

folder (i.e., commonly used relations, e.g., and).

them3.

plicitly infl~enced.~

Specification Reformulation
The previous section's analysis and reformulation were
basically independent of the validation question. This
section will suggest more drastic reformulations which

'If there is an influence on a static concept post it as an
error.

'Explicit information influence are various forms of as-
signment. Event parameters are almost always removed
since the dominating influence is the control influence on
the event (e.g., who the caller is).

take advantage of the knowledge implicit in the vali-
dation question.

Modification, whether motivated by errors discov-
ered in the specification or by simplifying assumptions,
are accomplished via the application of transforma-
tions. Since ASC is a component of ARIES, it is able
to take advantage of an extensive library of evolution
transformations [Johnson and Feather, 19901. These
transformations formally evolve a specification based
on specific desired effects.

An important feature of the reformulation process is
that not all the effort to build the specialized specifica-
tion need be thrown away after doing validation. Many
of the applied transformations are equally valid in both
the specialized specification and the original specifica-
tion. ASC allows the analyst to declare during refor-
mulation if a transformation should be recorded and
later applied to the original specification. This selec-
tive record of transformations provides an opportunity
for these transformations to be replayed on the original
specification. (This selective replay capability has not
yet been implemented in ASC.)

Reformulations Motivated by the
Validation Question
Reformulation based on a validation question is anal-
ogous to how artial evaluation (mixed computation)
[Ershov, 1985fis able to generate an efficient resid-
ual program based on a more general program and a
subset of its input parameters. This technique is po-
tentially more powerful because a validation question
is a richer source of knowledge than just a list of input
parameters.
Reformulation based on assumptions We begin
with VQ-Handofs assumption (see figure 5) that there
will be a fixed number of tracks which already ex-
ist. Figure 10 shows the influence graph of fized-set-
of-tracks and all of the concepts in the specification
it directly influences, i.e., track, inifiafe-fracking, and
eziract-track-info.

The analyst begins with the event initiate-tracking.
Influence analysis shows there are no other influences
on it. Visual inspection reveals to the analyst that it
creates tracks. Since the assumption says there will
be no new tracks, this event is superfluous and thus
should be abstracted

The analyst next handles the type track. The impli-
cation of the aseumption is obvious. The type should
be declared static. Note that this is not generally true
within the air traffic control domain, but illustrates a
common result of validation question assumptions.

The third influenced node is the event eztract-track-
info. The analyst attempts to handle it as he/she

'A theorem prover would be very useful here. Given the
narrowed context, it might be tractable to prove the above
conclusion automatically. This is outside the scope of ASC.

33

Figure 10: Influence Graph of the assumption fized-
sei- o f- ira cks

handled initiate-fracking. In this case, visual inspec-
tion of the event shows that this event both creates
tracks and assigns them a track-position. At this point
the analyst needs to determine if he/she will special-
ize eziraci-irack-info into a new event which only deals
with track-position or if the event may be abstracted
away completely. The analyst then displays a new in-
fluence graph as shown in figure 11. This influence
graph shows that eztraci-irack-info influences both
track and track-position. Additionally, track-position
is influenced by the driving scenario ds-level-% At this
point, remembering that driving scenarios have taken
responsibility to be the sole maintainer of the concepts
they influence, the analyst now removes eziraci-track-
info from the specialized specification.

u u c -1-

Figure ll: Influence Graph of the event eziraci-track-
info

Reformulation based on driving Scenarios In
the current example, influence analysis shows that the
nezi-controller relation used by auiomaiic-init-handoff
relies on paired and Pighi-plan neither of which is fully
defined. Additional analysis shows that jlighi-plan in-
fluences only a few other concepts including confor-

mance. The analyst decides to abstract out jlighi-plan
and paired and then model nett-controller and confor-
mance without them.

One is to redefine
nett-controller such that it can be derived from con-
cepts already within the specialize specification or to
directly maintain the relation. In the spirit of pick-
ing the approach which is quick (and hopefully not too
dirty), the latter is chosen. This is easy to do within
the context of the validation question. The analyst
simply includes an assertion as part of the driving sce-
nario that neti-coniroller(ac-1, cl).
More reformulation based on assumptions
Conformance is handled slightly differently. Since VQ-
Handoff deals with handoffs which are initiated aut-
matically, the analyst can take advantage of this spe-
cialized case knowledge and assume conformance is al-
ways true. To assume otherwise would imply one is
not in an automatic handoff situation and thus would
be outside the scope of VQ-Handoff.

Note that it might be tempting to abstract away
conformance by assuming inhibited-handoff is false, but
this would fail because inhibited-handobialso influences
other events which are directly involved in the valid&
tion question (see figure 12). Such assumptions which
influence system behavior with respect to the valid*
tion question are not acceptable.

Two approaches are possible.

Figure 12: Influence Graph of the relation Inhibiied-
Handof

Another use for assumptions is to decompose vali-
dation questions into smaller more manageable pieces
similar to how assumptions are used in proofs to break
them up into multiple, hopefully more manageable,
pieces. In the case of automatic verses manual initi-
ation of handoff, a well chosen assumption creates two
distinct scenarios which are then handled separately.

Reformulation to introduce qualitative abstrac-
tions An earlier version of the validation question
VQ-Eandoff waa expressed in terms of irack-posiiion.
Likewise, many event preconditions were expressed in
terms of track-position. Rather than describe scenar-

34

ios in terms of track-positions, the analyst decided to
reformulate the specification to introduce qualitative
abstractions. ASC facilitated this by showing what
concepts where influenced by track-positions. The an-
alyst was then able to use ARIES transformations to
replace complex predicates about track-position with
new predicates expressed in terms of newly defined re-
lations. These new relations were top-of-6locL-altitude,
within-handoff-computed-point, within-accept-handof-
computed-point-distance, and within-accept-handof-
computed-point-time. Each is a specializations of track-
position. This now allowed the analyst to easily de-
scribe validation questions and scenarios in terms of
these qualitative states rather than in terms of track-
position which has many more states but which fall
into one of these five qualitative states.

Reformulating scenarios as run-time con-
straints Not all optimizations are realizable during
specialized specification construction. This problem is
pointed out by Meyer in [Meyer, 19911 when applying
partial evaluation to imperative languages. The prob-
lem is that compile time execution can result in side-
effects which are not noticed at the appropriate time.
This is because the side-effect could happen during spe-
cialized specification construction and not during sim-
ulation. The problem with this is that other parts of
the specification which trigger on the side-effects of the
partially evaluated scenario will now not have those
side-effects to react to at run-time. As a result par-
tial evaluation at specialized specification construction
time must be constrained not do anything that causes
triggering states to disappear.

In VQ-Handofl the handoff scenario includes only
automaiic-init-handoff and accept-hand08 It excludes
several other events that could be a part of a typi-
cal handoff scenario (e.g., manual-init-handof, rejeet-
handoff, and cancel-handon. ASC translates these sce-
narios into a procedural invariant which ensures the
appropriate behavior at run-time. The advantage of
such a constraint is that one is not forced to deal with
control issues regard the full set of events until the pair-
wise (in this case automatic-init-handoff and accept-
h a n d o n interaction has first been resolved.

Horizon Effect Addressed
ASC mitigates the horizon effect by trying to create a
specialized specification which defines a closed simula-
tion model. In such a model there are no outside influ-
ences and all influence paths within the closed model
are known, thus there is no horizon effect.

With respect to the current example, reformulation
continues until a closed model is achieved. The final
specialized specification contains 44 influence nodes.

S um mary
The success of the ARIES Simulation Component may
be measured with respect to the following criteria.

ability to execute a specification where previously it
could not be done.
ability to execute a specification with less effort than
was required before.
ability to document requirements satisfaction.
ability to make validation comprehensible to stake-
holders.
ability to provide a flexible approach for system val-
idation.

At this point its too early to address most of these
issues. I have only applied ASC to a few validation
questions, all within the domain of ATC handoffs. The
most quantifiable results to date concern the number of
concepts involved in the specification of VQ-Handoff,
figure 13.

D I number of concepts

Figure 13: Number of Concept Declarations for Vali-
dation Question vq-handoff

This illustrates that only a fraction of the total
number of possible concepts were actually needed to
achieve executability. Additionally, the focus provided
by the validation question provided direction on which
concepts to flesh out next in order to achieve closure
and executability. Granted these technique could and
have to some degree been applied by hand when one
builds a rapid prototype. The difference is that ASC
generates both a rapid prototype and a formal charac-
terization of how it relates to the original specification.

As a sidebar, in the process of constructing the spe-
cialized specification I discovered several errors. Many
of these were in fact errors in the specification which
I believed was essentially correct. This seems good,
in that error discovery is an important precursor to
validation.

References
Boehm, B. 1981. Software Engineering Economics.
Prentice Hall.
Johnson, W.L.; Feather, M.S.; and Harris, D.R.
1991. The KBSA requirements/specifications facet:
ARIES. In Proceedings of the 6th Knowledge-Based
Soflware Engineering Conference. to appear in IEEE
Ezpcrt.
Brooks, F. P. 1986. No silver bullet: Essence and
accidents of software engineering. Computer 20(4): 10-
19.

35

Johnson, W.L. and Feather, M.S. 1991. Reusable gist
language description. Available from USC / 1%.
Kleer, J.de 1986. How circuits work. In Qualitative
Reasoning About Physical Systems. MIT Press. 205-
280.
Kleer, J.de and Brown, J . S. 1986. Qualitative physics
based on confluences. In Qualitative Reasoning A bout
Physical Systems. MIT Press. 7-83.
Johnson, W.L. and Feather, M.S. 1990. Using e v e
lution transformations to construct specifications. In
Automating Soflwan Design. AAAI Preas.
Ershov, A. P. 1985. On mixed computation: Infor-
mal account of the strict and polyvariant computation
shemes. In NATO ASI Series, Vol. F14 - Control
Flow and Data Flow: Concepts of Distributed Pro-
gramming. Springer-Verlag. 107-120.
Meyer, U. 1991. Techniques for partial evaluation of
imperative languages. In Proceedings of Sympsiom
on Partial Evaluation and Semantic-Based Program
Manipulation, Yale Univ., New Haven, CT. 94-105.

36

Cerbone

Machine Learning Techniques . in
Optimal Design

Giuseppe Cerbone
Oregon State University
Computer Science Dept.

Corvallis, OR 97331 (USA)
Introduction

Many important applications can be formalized as
constrained optimization tasks. For example, we are
studying the engineering domain of two-dimensional
(2-D) structural design. In this task, the goal is to de-
sign a structure of minimum weight that bears a set of
loads.

Figure 1 shows a solution to a design problem in
which there is a single load (L) and two stationary s u p
port points (S1 and S2). The solution consists of four
members, El, E2, E3, and E4 that connect the load
to the support points. In principle, optimal solutions
to problems of this kind can be found by numerical
optimization techniques. However, in practice [Van-
derplaats, 19841 these methods are slow and they can
produce different local solutions whose quality (ratio to
the global optimum) varies with the choice of starting
points. Hence, their applicability to real-world prob-
lems is severely restricted.

To overcome these limitations, we propose to aug-
ment numerical optimization by first performing a
symbolic compilation stage to produce (a) objective
functions that are faster to evaluate and that depend
less on the choice of the starting point and (b) selection
rules that associate problem instances to a set of rec-
ommended solutions. These gods are accomplbhed by
successive specializations of the problem class and of
the associated objective functions. In the end, thia pro-
cess reduces the problem to a collection of independent
functions that are fast to evaluate, that can be differen-
tiated symbolically, and that represent smaller regions
of the overall search apace. However, the specialization
process can produce a large number of sub-problems.
This is overcome by deriving inductively selection rulea
which associate problems to small sets of specialized
independent sub-problem. Each set of candidate 80-

lutions is chosen to minimize a cost function which
expresses the tradeoff between the quality of the solu-
tion that can be obtained from the sub-problem and
the time it takes to produce it. The overall solution
to the problem, is then obtained by solving in parallel
each of the sub-problems in the set and computing the
one with the minimum cost.

I

-7 ?

In addition to speeding up the optimization process,
our use of learning methods also relieves the expert
from the burden of identifying rules that exactly pin-
point optimal candidate sub-problems. In real engi-
neering tasks it is usually too costly to the engineers
to derive such rules. Therefore, this paper also con-
tributea to a further step towards the solution of the
knowledge acquisition bottleneck [Feigenbaum, 19771
which has somewhat impaired the construction of rule-
based expert systems.

s1 s2

Figure 1: A solution to a 2-D structural design problem
with given topology.

Our optimization schema differs from techniques
currently used in the machine learning community.
Our approach relies on the specialization of the prob-
lem via incorporation of constraints rior to optimiza-
tion. Braudaway [Braudaway, 1988 P designed a sys-
tem along the same principle. However, to our knowl-
edge, very little work has been done in using learning
techniques to speedup numerical optimization tasks.
In contrast, the current trend in the machine learning
community focueee on methods, such as Explanation
Based Learning (EBL) [Ellman, 19891, capable of gen-
erating rulea. In addition, EBL methods have had little

3 7

success in the task of optimizing numerical procedures.
We conjecture that one of the reasons is the depen-
dence of EBL methods on the trace of the problem
solver. The trace of a nurwrical optimizer gives little
information on the structure of the problem. There-
fore, in mathematical domains, EBGderived rules are
too detailed to produce any appreciable speedup.

The remainder of the paper is organized as follows.
Section presents the 2-D structural design task. This
is followed in Section by an overview of numerical o p
timization methods, their limitations, and our solution
which is illustrated using a simple example. The ma-
chine learning methods are outlined in Section . Theee
methods are then applied in Section which illustrates
the experiments. These show that, for a certain family
of problems, the compilation stage produces a substan-
tial improvement in the performance of the optimiza-
tion methods. Benefits and limitations of our strategy
are summarized in Section , which also outlines future
work.

Task description
Table 1 describes the 2-dimensional structural design
task that we are attacking. Figure 1 shows an exam-
ple problem in which 1 is the load and S1 and S2 are
two supports. The so-called “topology” is given as a
graph structure containing four edges (the members)
and four vertices (the load, the two supports, and an
intermediate connection point C). The topology d a s
not specify the lengths of the members or the location
of C. The topology and the position shown in the figure

Table 1: The 2-D Design Task.

A set of stable points (supports)
A set of external loads with application
poinb within R

Given: A %dimensional region R

Find The number of membem, connectivity, .nd
poeitions of all intermediate connection
pointd such that the structure haa minimum
weight and is stable with respect to dl exter-
nal loads.

give the minimum-weight solution. In this solution, 4
members are used and El and E3 are in tension (they
are being “stretched”), while members E2 and E4 are
in compreasion. Tension members will be &erred to M
urods” and indicated by thin lines. Compreasion mem-
bers will be referred to M “ c o l u d and indicated by
thick lines. The type of members used in the solution
is an abstraction that we have used throughout our
work. To indicate a configuration of tensile and com-
pressive members that consititutes a solution, we have
defined the stress state. The stress state is an array
of m elements in which each element corresponds to
a member. The value of each element in the array is

+1 if the member is tensile and -1 if the member is
compressive.

The weight of a truss can be decreased in at least
two ways. First, the engineer can use lighter material.
Second, the “shape” can be designed in such a way
that, for instance, it uses less material and, hence, it is
lighter. In this paper we do not consider the (admit-
tedly) important advances in the science of material
but, instead, we focus on the synthesis of shapes that
reduce the weight of a truss with a chosen construction
material.

The task shown in Table 1 is actually only one step
in the larger problem of designing good structures.
In general, structural design proceeds in three steps
[Palmer and Sheppard, 1970; Vanderplaats, 19841.
First, the problem solver chooses the topology, which
specifies the locations of the loads and supports and the
connectivity of the members. Then, the second step
is to determine the locations of the connection points
(and hence the lengths, locations, internal forces, and
cross-sectional areas of the members) so as to mini-
mize the weight of the structure. This is usually ac-
complished by numerical non-linear optimization tech-
niques. The third and ha l step in the p r o w opti-
mizes the shapes of the individual members. This can
often be accomplished by linear programming.
In addition to focusing only on the first two steps,

we have introduced eeveral simplifying assumptions to
provide a tractable teatbed for developing and teat
ing machine learning methods. Specifically, we a s
sume that structural members are joined by frictionless
pins, only statically determinate structures are consid-
ered, the crow section of a column is square, columns
and rods of any length and cro88 sectional area are
available, and supports have no freedom of movement.
A statically determinate structure contains no redun-
dant members, and hence, it-? geometrical layout com-
pletely determines the force xting in each member.

Given these assumptions. .ne weight of a candidate
solution is usually calculated by a three-step process.
The first step is to apply the method of joints [Wang
and Salmon, 19841 to determine the forces operating in
each member. Once this is known, the second step is to
classify each member as compressive or tensile. This is
important, because compressive and tensile members
are composed of different materials and have different
densities; e.g. concrete columns and high tensile steel
rods. The thud step is to determine the cross-sectional
area of each member. The load that a member can
bear is assumed to be linearly proportional to its crow-
sectional area. Finally, the weight of each member can
be computed as the product of the density of the ap-
propriate material, the length of the member, and the
crosksectional area of the member.

The last two steps can be collapsed into a single
parameter k: the ratio of the density per-unit-of-force-
borne for compressive members to density per-unit-of-
force-borne for tensile members. With this simplifica-

38

tion, instead of minimizing the actual weight, we can
minimize the following quantity which, with an abuse
of notation, we define as

Table 2: Method of Joints for the example in Figure 1.
The product of the azial matn'z and of the unknown
forces F; eauals the load vector.

tensile compressive
members members

Fi is the force in member i, and l j is the length of
member i. This is the initial objective function for the
work described in this paper.

We conclude this section with a brief description of
the method of joints, which is one of the methods used
to calculate the Fi in statically determinate structures.
The method of joints computes these forces by solv-
ing a system of linear equations as illustrated, for the
problem in Figure 1, in Table 2. The matrix of coeffi-
cients is called [Wang and Salmon, 19841 the azial (or
s taf ic) matrix and the vector of givens is defined as the
load vector. In Figure 1, let C = (z,y), S1 = (ZI,YI),
and S2 = (22,y2), be the Cartesian coordinates of the
connection point, and the two supports, respectively.
In addition, let (z1,yr) be the coordinates, and let p
and 7 be the magnitude and direction of the load L.
The internal forcea in each member are obtained by
first constructing the axial matrix and load vector and
then solving the system of equations for the unknown
internal forces. Table 2 shows the symbolic system of
equations for the example in Figure 1 with unknown
forces F1, F2, Fs, and F, and with the coordinates of
all the points explicitly substituted.

Now that we have defined the 2-dimensional design
task and formulated it as a non-linear optimization
problem, let us turn, in the next section, to a brief
review of existing techniques for optimization and to
the proposed methods.

Knowledge-based Optimization
Classical optimization textbooks [Vanderplaats, 1984;
Papalambros and Wilde, 19881 present a comprehen-
sive survey of optimization methoda and of various
techniques for conducting the search for an optimal
solution. The schema illustrated in Figure 2 is typical
of many domain independent non-linear optimization
methods. The pro- is iterative. Starting at some
initial point, the objective function is evaluated and
the termination criteria are teated. If the test fails,
a new point is generated by taking a step, of some
chosen length in some chosen direction, away from the
current point. Each point defines a set of values for
the independent variables in the objective function.

Most optimization algorithms differ primarily in the
criteria used to choose the direction along which to
optimize. Some optimization methods (e.g., Powell's
method [Vanderplaats, 19841) choose the direction and
step size using only evaluations of the objective func-
tion. Other methods, such as gradient descent and
its variations [Papalambros and Wilde, 19881, require
computation of the partial derivativea of the objective

cos(a1) cos(a2) 0
sin(a1) s i n (a 2) 0

o cos(a2+180) C03(Q3) COS(Cr4)

0 sin(a2 + 180) sin(a3) sin(a4)

COS(Q1

cos(a3

sin(a1
sin(as

and li'r are Euclidean distances:

function to choose the new direction of optimization.
Still other methods approximate the partial deriva-
tives numerically by evaluating the objective function
at many points.

The primary computational expense of numerical
optimization methods is the repeated evaluation of
the objective function. An advantage of gradient de-
scent methods is that they need to evaluate the objec-
tive function less often, because they are able to take
larger, and more effective steps. Of course, they incur
the additional cost of repeatedly evaluating the par-
tial derivativea of the objective function. Hence, they
produce substantial savings only when the reduction
in the number of function evaluations offsets the cost
of evaluating the derivativea.
In engineering design, the objective function is typ-

ically very expensive to evaluate. This slows the nu-
merical optimization process because the speed of nu-
merical optimization is determined by the cost and
frequency of evaluating the objective function. For
the structural design domain to compute the objective
function (volume of each structure) a system of lin-
ear equations must be solved. This is typically carried
out by algorithms which are cubic in the number of
unknowns. This number is usually large in real appli-
cations like bridge design. Furthermore, the fact that
the Constant k is applied only to compressive members
makes it impossible to obtain a differentiable closed-
form. The signs of the internal forces must be com-

39

Figure 2: Traditional optimization schema.

puted before it is possible to determine which members
are compressive. This prevents the use of gradient-
based optimization methods that require fewer evalu-
ations of the objective function - only slower function-
based methods are applicable. One measure of the
performance of a numerical optimizer is the time it
takes to produce a solution. This quantity, however,
depends on the choice of the starting point. Therefore,
to obtain an accurate measurement, it is necessary to
average the values obtained running the optimizer from
different starting pointti.

Moreover, most engineering models are not uni-
modal. This directly affects the reliability of the solu-
tions because numerical optimizera settle for local min-
ima since they are unable to leap from one region to
another to determine the global minimum. As shown
in Figure 3, the objective function for the structural
design domain is non unimodal. For instance, for the
function in Figure 1 gradient methods started with
t = 1500 and y = 2000 reach a local minimum in
region R2 while the global minumum is in region R l .
A measurement of the reliability can be obtained by
taking the ratio (quality) of the local minimum and of
the global minimum in controlled experimenb in which
the absolute minimum can be easily computed. Time
and quality induce a tradeoff that can be exploited by
defining the function:

utility(ro1ution) = CPUtimo(aolution)*
CPUcort + qudlity(ao1ution)

where CPUcort is a positive constant that acmunts for
the cost of running the optimizer. We have used this
definition in the learning stages of our approach to
focus the attention of the optimization process on a
few candidates that will produce solutions of maximum
utility.
As shown in Figure 4, the increased reliability and

speed are accomplished by augmenting the traditional
run time optimization with a “compilation” stage prior
to numerical optimization. The inputs to the compiler
are (a) an high level description of the problem, (b)

c

Figure 3: Volume of the structure in Figure 1.

domain knowledge about stress states, and (c) a pro-
cedure to generate training examples. Symbolic and
inductive techniques are then used to (1) produce sim-
plified versions of the objective function per each stress
state, and (2) learn stress state selection rules which
map problem instances into seta of candidate stress
states of minimum a t .

First, the compiler produces one objective function
for each topology and stress state. Each of them func-
tions is a specialized version of the expression of the
weight and it is faster to evaluate than the original,
less specific, objective function. As an example, the
function produced for the topology and stress state in
Figure 1 is illustrated in Table 3. This expression is a
closed form of the weight of a structure as a function
of the two Cartesian coordinates of connection point C
restricted to region Rl in Figure 3. Moreover, these
simplified expressions are differentiable and this per-
mits the use of faster gradientbased optimization al-
gorithm.

Another obstacle to practical applications of numer-
ical optimization methods is the high dimensionality
(number of independent variables) of the problems.
Our compilation strategy decreseee the dimensionality
of optimization problems by searching a set of train-
ing examples for relations (regularities) among inde-
pendent variables. These relations are then used as
constraints among variables and are incorporated into
the specialized versions of the objective function. This
procedure eliminates independent Variables with the
result of greatly simplifying the optimization process,
of enlarging its scope of applicability, and of speed-

40

. .

Weight =
(1.14 1 0 ' ~ ~ - 5.66 1 0 ~ ~ 2 + 8.16 105z3+
3.28 1 0 ' ~ ~ - 3.26 logzy + 2.44 1 0 ~ ~ ~ ~ -
6.70 1ogY2 + 8.16 1oSzy2 + 2.44 io5$-
4.08 10l6) 1
6.40 3 - 2.56 lo')
(1.28 10'zy - 2.56 10'2 + 2.56 lO'y-

- ObJrCthr.
Fundon Fundkn

,&,

I

1

Figure 4: Proposed numerical optimization framework.

ing up run time optimization. For the region B l in
Figure 3, the compiler will determine that if the con-
nection is expressed in polar coordinates p and Q only
the distance p from support S i need be determined (see
Figure 1.) This is because, in' the analysia of the exam-
ples, it will discover that the angle Q can be computed
as one half of the angle p which is one of the givens
of the problem. The final objective function is shown
in Table 4 which contains only a single variable p vs.
the two (z and y) in the expression in Table 3. This
final expression indicates a reduction in dimensional-
ity because, at run time, the numerical optimizer will
only need to determine the value of p to compute the
position of the connection point.

Finally, the compiler learns search control knowledge
in the form of
XF-THEI-ELSE rules. This is then used at run time to
select stress statea that lead quickly to quasi-optimal

solutions. The set of stress states is chosen so that the
utility of the stress states is maximized. The utility
is a function that combines the time it takes to pro-
duce a solution with its expected quality (ratio to the
global minimum.) This function introduces a trade-
off between quality and time that is exploited by the
learning algorithm [Cerbone and Dietterich, 19921. As
an example, for the design problem in Figure 1 whose
objective function is shown in Figure 3, the compiler
derives search control knowledge that allows the prob-
lem solver to focus the attention of the numerical op-
timizer on regions R i and R2 when the load is directed
toward support S2 and away from support Si.

Machine Learning Methods
This section describes in greater detail the symbolic
and inductive learning techniques. Inductive learning
techniquea are used to (a) simplify the optimization
process by reducing the number of independent vari-
ables and (b) derive the stress state selection rules.
The inductive methods rely upon knowledge about the
partitioning of the design space and upon a set of train-
ing examples that, for many engineering tasks, can be
generated by the compiler. A complete discussion of
the compilaton stages can be found in [Cerbone, 19921.
Symbolic Methods. Symbolic techniques are used
to incorporate into the objective function knowledge
about stress statea and knowledge discovered during
inductive analysis. The goal is to produce an highly
simplified and specialized objective function. This is
accomplished by partial evaluation [F'utamura, 19711,
and loop unrolling [Burstall and Darlington, 19771 -
two techniques widely used in high-end optimizing
compilers. Partial evaluation incorporatea constant
values for variables into functions (or programs) and
simplifies them. Loop unrolling unfolds iterative con-

Table 4: Objective function for the structure in Fig-
ure 1 with reduced dimensionality.

Weightrimpiiliad
(1.16 1013~ - 5.19 109p' + 8.19 105~3 - 4.08 1013) /
3.95p2

41

structs (e.g., for loops) and transforms them into se-
quential programs. These techniques have been im-
plemented using the Mathematica programming lan-
guage [Wolfram, 19881 and [Maeder, 19891 which is
suitable to numerical problems.

As an example of specialization, we illustrate how
domain knowledge is used to specialize the objective
function. First the problem solver chooses the topol-
ogy. This can be simply done by enumerating a few
possible configurations. Once the topology is chosen,
it can be incorporated into the objective function. This
allows us to compute symbolically the axial matrix and
the load vector (see Section). We then apply sym-
bolic algorithms to solve and simplify the system of
equations and to obtain a closed-form expression for
the forces. In principle, an infinite number of topolo-
gies should be explored; however, Friedland [Friedland,
19711 experimentally demonstrated that only a fP-7. af
them need be considered to achieve satisfactory --iu-
tions.

The second specialization step is to plug in the givens
of the problem and partially evaluate the resulting
mixed symboliclnumeric expression. For our exam-
ples, the givens of the problems are the loads and s u p
ports; however, one may wish to analyze a structure
subject to different inputs such as various loading con-
ditions or support locations. In such casea it is possible
to leave those values in symbolic form and substitute
their numerical values at run time.

The third compilation step is to split the objective
function V into casea according to stress state. When
the objective function is specialized according to stress
state, the result is a collection of special-case objective
functions {VI,.. . , Vn). Because each l$ corresponds
to one stress state, it is possible to tell, at compile
time, which forces should be multiplied by k. Hence,
each is differentiable, and this enables us to employ
gadient-based optimization techniques that, typically,
are faster than methods based only on evaluating the
objective function alone.
Reduction of independent variables. A further
speedup and increase in reliability of the numerical
optimizers is obtained using inductive methods to d e
crease the number of independent variablea (dimen-
sionality) in the numerical optimization problem. The
compiler is given a series of examples and usea them
to inductively determine which independent variables
can be computed as functions of known quantities. For
instance, in the design domain, when swching within
a region it might turn out to be superfluous to search
along all dimensions because there might exist a sim-
ple relationship between one of the coordinates and
known quantities like the location of loada and s u p
ports. These relations are then used as constraints
and are incorporated into the objective functions. The
result is the reduction of the number of independent
variables. This, in turn, produces an even simpler and
faster optimization problem. For instance, the func-

tion shown in Table 3 has two independent variables
while the corresponding inductively simplified version
has only one independent variable and it is shown in
Table 4. Hence, the final optimization problem entails
a simple linear optimization while the original one has
two dimensions.

The variables to be eliminated are determined using
an EBL-like approach which employs:
0 training examples
0 a library of given geometry entities (points, angles,

0 a geometrical domain theory
0 known relationships among geometric entities
0 ngulan'fies - a mixture of heuristics and statistical

Each unknown connection point is subject to a compile
time heuristic search process that attempts to compute
(reformulate) the location as a function of loads and
supports.
To see how this works, let us consider again the ex-

ample problem in Figure 1 which we shall refer to as
the "bisector" example. In this example, the connec-
tion point C is the unknown and the givens are the
load L and the supports SI and S2. Moreover, let us
assume that a set of training examples has been either
provided or derived by the system. The reformulation
s tarb by identifying all geometric objects using the
given domain theory. For the bisector example, the
system identifies, among others, the following geomet-
ric objects:

point (S i) , po in t (S Z) , point (C) , point (L) ,
angle(B, L, S i , S2), a n g l d a , C, Si, S2),
repont(SG1, S i , S2), ...
Predicatea such as point and angle are basic el-

ements of the given geometric domain theory. This
meane that, given a set of Cartesian coordinates, the
system .q capable of computing each predicate. Dur-
ing the ,mputation of each predicate, the system tags
it as ' 5 . 1 e n or unknown. A predicate is given if all
the entities used to compute it are either givens of
the problem (loads or supports) or can be expressed
a combination of given predicatea. Otherwise, the
predicate is tagged as unknown. For the bisector ex-
ample, point(C) and all predicates that involve it in
their derivation (e.g. angla(a , C , S i , S2)) are un-
knowns, all others are givens.

With this knowledge, the system then tries to relate
the unknown geometric entity point(C) to as many
other entities M poseible with the ultimate goal of ex-
pressing it only using given geometric entities. This
is accomplished by using a blend of EBL and dis-
covery techniquea. In the EBL jargon, the geomet-
ric knowledge base is the domain theory, point (C) is
the target concept, and the operationality criterion is
the fact that a concept must be expressed in terms of
known geometric objects. To visualize this reformula-
tion step, let us refer to the derivation tree in Figure 5.

etc.)

regression techniques.

I
I
I

: P = P I P 2 i * .'

- - - - - .Leaend
w
=I }

* - -*.p

Figure 5: Decision tree to derive the concept point (C).

The rightmost branch indicates that C is a connection
point and, therefore, it is no longer explored. The left-
moat branch, instead, uses a domain rule that refor-
mulates a point in polar coordinates. Intuitively, the
domain rule states that a point can be identified by
its distance p from Si and by the angle a between
points C, Si, and S2. With this in mind, the system
recursively triea to determine angle(a, C, Si, ,521
and distance(p, C. S i) . After having exploited all
proofs, the system concludes that it is not possible to
re-express the angle and the dintance in terms of
known entities. If we were to follow EBL strictly, we
should conclude that the domain theory is incomplete;
that is, it is not powerful enough to bridge the gap be-
tween unknowns and givens. This, in turn, implies that
the search would terminate concluding that point (C)
cannot be re-expressed in terms of known geometric
objects.

To overcome this problem we have used a discov-
ery a proach that fills these knowled e gaps with eu-
reka fkrstall and Darlington, 1977 f steps. Despite
the name, however, in our strategy these steps are

not arbitrary but inductive For the example in Fig-
ure 1, we determine that the angle a between points
C, Si, and S2 is exactly one-half the angle /3 between
points L, Si, and S2. Once this regularity is deter-
mined, in contrast with Burstall and Darlington's ap-
proach, we test the eureka step against all user pro-
vided examples to determine if it is a random occu-
rance or a widespread phenomenon. In the former case,
any use of this regularity is abandoned and others (if
any) are tried. In the latter case, the regularity is as-
sumed as a transformation of the unknown geometric
entity. This is shown by the node in Figure 5 con-
nected by the dashed lines. The system then subgoals
on the geometric entities that were used to recognize
the angle p. These are recognized as givens because
they were derived from the position of the load and of
the supports and the search terminates. The discus-
sion of the branch identified by the dotted is similar to
the one above and it is omitted for the sake of brevity.

The actual domain rules used in the geometric the-
ory carry along also information that bridge the gap
between the Cartesian representation of a point and
the polar one. This implies that the z and y coordi-
nates of C can be expressed in terms of the angle a and
of the distance p. In turn, the angle a is substituted
by f which can be computed from the given position
of t e load and supports. These transformations are
considered (LB constraints and are incorporated into the
objective function which is further simplified using the
symbolic techniques. The result of the incorporation
is shown in Table 4.
Rule derivation. The specialization steps discussed
above greatly improve the running time of the optimiz-
ers on each objective function but they might introduce
a large number of candidate solutions. These, in princi-
ple, can be exponential. To overcome this problem, we
have devised a new inductive learning method to prune
candidates that do not lead to optimal solutions. This
method learns search control knowledge in the form of
decision trees which can then be quickly transformed
into IF-THESI-ELSE rules. These design rules associate
features of the problem to a few regions in which the
global minimum is believed to lie according to the ex-
amples given to the learning algorithms. The global
solution is then obtained by running the optimizer on
each of these regions and by taking the minimum so-
lution.

We have found that most existing learning algo-
rithms are not suitable for learning rules for optimiza-
tion problems. The main obstacle is the absence of
features that allow discrimination among claases. Al-
gorithma like ID3 implicitely require independence of
classes. Features with such discriminatory power are
difficult to derive for many real application and espe-
cially for optimization tasks. On the other hand, it is
relatively easy to provide shallow features which can
circumscribe a set of possible solutions. Therefore, in
devising our learning method we have assumed that all

4 3

features are shallow and proposed UTILITYID3, a novel
learning algorithms. The algorithm resembles the well-
known ID3 algorithm [Quinlan, 19871 in that it builds a
decision trees and uses an information-theoretic heuris-
tic to choose the feature on which to split at each re-
cursive call. However, it is new in that the heuristic
takes into consideration that the output is a set of rec-
ommended actions rather than a single discriminating
class. This algorithm is fully described in [Cerbone,
19921 and [Cerbone and Dietterich, 19921.
In addition to the learning algorithm, we have in-

troduced mazimum utility learning set, a new learning
framework. In this framework, a utility ie associated to
each candidate solution. The problem is to learn a set
of actions of maximum utility that covers all given ex-
amples. For instance, in the design problem, the utility
is a function of the time it takes the numerical opti-
mizer to find a solution. The quality is measured with
respect to the globally optimal design. It turns out
that this learning roblem is NP - complete [Garey
and Johnson, 19797. Hence, UTILITYID3 uses an a p
proximation algorithm to determine a solution.

Experiments
To test the efficacy of this approach, we [Cerbone and
Dietterich, 19911 have solved a series of design prob-
lems using an im lementation based on Mathemat-
ica [Wolfram, 1988f, and we have measured the impact
of the compilation stages on the evaluation of the ob-
jective function, on the optimization task, and on the
reliability of the optimization method. The measura
mente presented are averages over five randomly gen-
erated designs and, for each design, over 25 randomly
generated starting points.
Objective function. The objective function of each
design problem was evaluated in four different ways
and, for each of them, we averaged the CPU' time
over the different designs and starting points. The vol-
ume was first computed using the traditional, naive,
numerical procedure with the method of joints. We
then compiled the designs incorporating, in three suc-
cessive stages, topological information, the givens of
the problems, and the stress state. Figure 6 shows the
time (per 100 runs) to evaluate the objective function
at the various compilationstages. The biggest speedup
was obtained with the numerical substitution of valuea
into the symbolic c l o d form expression obtained and
with the specialization to streas states. This suggests
that the gain is related to the elimination of arithmetic
operations from the original numerical problem.
Optimization. As indicated in Section , the running
time of the optimizers is influenced by the number of
function calls and by the time for each function evalu-
ation. To present the benefits of our approach on the
optimization task, we have experimented with two o p

'The example were run on a NeXT Cube with a 68030
board.

CPU sa.

Figure 6: Influence of the compilation stage on the
CPU time per function evaluation.

timization al orithms (a) an optimizer based on Pow-
ell's method bike, 19861 that does not require gradient
information and (b) the version of conjugate gradient
descent [Press and others, 19881 provided by Mathe-
matica. The graphs in Figures 7 and 8 report, respec-
tively, the number of objective-function calls and the
overall CPU time for each optimizer. The values con-
nected by solid lines correspond to casea where the o p
timizer had no gradient information, while the values
connected by dashed lines indicate averages utilizing
the conjugate gradient descent method with alterna-
tive approximations for the gradient vector.
AB expected, the number of evaluations remains con-

stant throughout the compilation stages when the non-
gradient is used, while it decreases drastically when we
switch to the gradient-based optimization method.

Figure 7: Influence of the compilation stage on the
number of function calls.

The overall CPU time (Figure 8) steadily decreases
as well. For the non-gradient method, the decrease is
due to the progressive simplification of the objective

44

function itself, so that it is cheaper to evaluate. When
we switch to the gradient method, there is initially no
speedup at all, because the cost of evaluating the full
gradient offsets the decrease in the number of times the
objective function must be evaluated. However, addi-
tional speedups are obtained by approximating the ob-
jective function as a quadratic and as a linear function
(by truncating its Taylor series).

We have found experimentally that there is no ap-
preciable difference between the minima reached using
the full gradient vector and the minima computed us-
ing quadratic approximations of the partial derivatives.
However, the precision of the results obtained with the
linear approximation is significantly reduced. Depend-
ing on the application, this trade of accuracy for speed
may be acceptable. If not, the quadratic approxima-
tion should be employed.

Another possibility is to employ the linear approx-
imation for the first half of the optimization search,
and then switch to the quadratic approximation once
the minimum is approached. In other words, the linear
approximation can be applied to find a good starting
point for performing a more exact search.

Rules
Speedup of
Numerical

Figure 8: Influence of the compilation stage on the
CPU time.

Reliability. An optimization method is reliable if
it always finds the global minimum regardlesa of the
starting point of the search. Unfortunately, as shown
in Figure 3, the objective function in this task is not
unimodal, which means that simple gradientdescent
methods will be unreliable unlesa they are started in
the right “basin.” It is the user’s responsibility to pro-
vide such a starting point, and this makes numerical
optimization methods difficult to use in practice.

From inspecting graphs like Figure 3, it appears
that, over each region corresponding to a single stresa
state, the objective function is unimodal. We conjec-
ture that this is true for most of 2-D structural de-
sign problem. This means that optimization can be
started from any point within a stress state, and it will
always find the same minimum. If this is true, then

X

X X

our “divideand-conquer” approach of searching each
stress state in parallel will be guaranteed to produce
the global optimum.

We have tested these hypothesis by performing 20
trials of the following procedure. First, a random start-
ing location was chosen from one of the basins of the
objective function that did not contain the global min-
imum. Next, two optimization methods were applied:
the non-gradient method and the conjugate gradient
method. Finally, our divide-and-conquer method was
applied using, for each of the specialized objective func-
tions 5, a random starting location that exhibited the
corresponding stresa state. In all cases, our method
found the global minimum while the other two meth-
ods converged to some other, local minimum.

Concluding Remarks
In this paper we have illustrated how machine learning
techniques can be applied to optimal engineering de-
sign. This has been accomplished by tackling problems
in two different areas:

speeding up existing numerical methods
0 learning a set of candidate optimal solutions.
Table 5 illustrates the correspondence between these
problem and the machine learning techniques used
in their solution. Our main contribution is to have
shown that ML techniques can be effectively used to
overcome some of the drawbacks of numerical optimiz-
em and to increase their efficiency. Another contribu-
tion of thia paper is to have shown that inductive tech-
niques can complement traditional software engineer-
ing approachea in mathematical domains. This greatly
reducea the need for knowledge transfer from experts
to computer systems. In our approach, these results

Table 5: Rows enumerate problems in optimal design.
Columns list Machine Learning paradigms. X’s indi-
cate the ML paradigm used toLlve the problem.

11 Symbolic I Inductive I
I 11 ~ e i h o d s I Learning I
I Selection II I i

I Ontimisers I I I I

required the use of a blend of novel and traditional op-
timization techniques. First, we have defined a new
learning framework which is more appropriate to op-
timization tasks. This framework involves (a) the r e
quirement that the output of the learning algorithm be
a set of alternatives and (b) meaeures of the cost of ob-
taining solutions. The learning methods produce sets
of minimum cost. Within this framework we have de-
veloped algorithm which output IF-THEE-ELSE rules
that associate problem characteristics (features) to sets

45

strated that inductive methods can also be used to
simplify numerical problems. In fact we employed a
discovery approach to reduce the number of indepen-
dent variables. Finally, we have used more traditional
compiler optimization techniques in a learning frame-
work and merged them with inductive methods. We

I Acknowledgements
The author wishes to thank his advisor, Thomas
G.Dietterich, for the discussions that lead to this pa-
per, David G. Ullman and Prasad Tadepalli for com-
ments on related papers, Igor Rivin for information on
the internals of Mathematica, and Jerry Keiper for in-
sights into Findninimumn in Mathematica version 1.2.
Ullman is responsible for suggesting the term stress
state. This research was supported by NASA Ames
Research Center under &ant Number NAG 2-630.

References
Braudaway, Wesley 1988. Constraint incorporation
using constrained reformulation. Tech.Rep. LCSR-
TR-100 Computer Science Dept., Rutgers University.
Burstall, R.M. and Darlington, J. 1977. A trans-
formation system for developing recursive programs.
Journal of the ACM 24(1):44-67.
Cerbone, Giuseppe and Dietterich, Thomas G. 1991.
Knowledge compilation to speed up numerical opti-
mization. In Proceedings of the Machine Learning
Workshop. 600-604.
Cerbone, Giuseppe and Dietterich, Thomas G. 1992.
Inductive learning in engineering: A came study. In
Proceedings of the Adaptive and Learning Systems
Conference of the IEEE Society for Optical Engineers.
Cerbone, Giuseppe 1992. Machine Learning in Engi-
neering: Techniques to Speed up Numerical Optimiza-
tion. Ph.D. Dissertation, Oregon State University,
Corvallis, OR.
Ellman, Thomas 1989. Explanation-based learning:
A survey of programs and perspectives. ACM Com-
puting Surue ys 21(2): 163-222.

Feigenbaum, E.A. 1977. The art of artificial intelli-
gence 1: themes and case studies of knowledge engi-
neering. Tech.Rep. STAN-CS77-621, Stanford Uni-
versity, Dept. of Computer Science.

Friedland, L.R. 1971. Geometric Structural Behau-
for. Ph.D. Dissertation, Columbia University at New
York, N.Y.
F'utamura, Y. 5971. Partial evaluation of a compu-
tation process - an approach to a compiler-compiler.
Systems, Computers, and Controls 2(5):45-50.
Garey, Michael J. and Johnson, David S. 1979.
Computers and Intractability, A Guide to NP-
completeness. Freeman.
Maeder, Roman 1989. Programming in Mathematica.
Redwood City, Calif. : Addison-Wesley, Advanced
Book Program.
Palmer, A.C. and Sheppard, D.J. 1970. Optimizing
the shape of pin-jointed structures. In Proc. of the
Institution of Civil Engineers. 363-376.
Papalambros, Panos Y. and Wilde, Douglass J . 1988.
Principles of optimal design: modeling and computa-
tion. Cambridge University Press.
Pike, Ralph W. 1986. Optimization for Engineering
Systems. Van Nostrand.
Press, William H. and others, 1988. Numerical
Recipes in C: the art of scientific computing. Cam-
bridge University Prem, Cambridge.
Quinlan, Roes J. 1987. Simplifying decision trees. In-
ternational Journal of Man-Machine Studies 27:221-
234.
Vanderplaats, Garret N. 1984. Numerical Optimiza-
tion Techniques for engineering design with applica-
tions. New York: McGraw Hill.
Wang, Chu-Kia and Salmon, Charles G. 1984. In-
troductory Structural Analysis. Prentice Hall, New
Jersey.
Wolfram, Steven 1988. Mathematica. Wolfram Re-
search.

46

Cerbone

Reforrnulat ion Issues
in

Numerical Optimization
Giuseppe Cerbonel

Oregon State University
Computer Science Dept.

Corvallis, OR 97331
I

The initial goal of our research ([Cerbone, 19921,
[Cerbone and Dietterich, 19921) was to provide Ma-
chine Learning techniques to speed up numerical opti-
mization. However, in hindsight, we have found oppor-
tunities to view part of our solution as a reformulation
problem in mathematical domains.

Mathematical domains present a unique opportunity
to develop and to test reformulation techniques. A typ-
ical mathematical task requires the solution of a set of
equations subject to given constraints. As an example,
in numerical optimization the problem is to determine
the values of the independent variables that minimize
an objective function subject to constraints on the val-
ues of the variables. Solutions to mathematical tasks
that arise in engineering or in physics often cannot be
found by algebraic manipulation and numerical meth-
ods must be employed to provide estimates. However,
most optimization methods are slow and brittle. In
fact, their speed and reliability depend on the choice
of a starting point and on the formulation of the objec-
tive function. This prevents their applicability in large
scale real life tasks.

To overcome these drawbacks, the user of numeri-
cal methods spends an enourmous amount of time re-
formulating the equations into a form appropriate for
solution. In particular, for numerical optimization the
goal is to determine a representation that allows to:
0 Specialize the objective function to convex regions
0 Decrease the number of independent variables
In the remainder of thie overview, we outline the

challenges and a few solutions to these representation
changes in the design of lightweight frames to support
loads.

A typical sequence of steps adopted by a problem
solver to optimize a design is illustrated by the dashed
lines in Figure 1 on the left. First, the engineer uses
her/his own knowledge and experience to formulate a
numerical task. Second, where possible, numerical o p
timization techniques are used to produce an optimal
solution. Numerical optimization is typically a slow
and brittle process. This is due to the fact that most
numerical methods are hillclimbers. Thus, their speed
is greatly affected by the number of evaluations of the

objective function and b the time required for each
evaluation. As shown in YCerbone, 19921, we have de-
vised techniques to reformulate the task to produce a
faster optimization. Under many circumstances, the
goal of speeding up the optimization conflicts with the
goal of letting the engineer specify the objective func-
tion in a highly abstract format. In fact, while sim-
plifying the formulation of the problem, the abstract
specification can greatly slow down and decrease the
reliability of the numerical solution. This is because
optimizers have no knowledge of the problem domain.
Therefore, at run time they use the same objective
function provided by the engineer for all regions. In
addition, some objective functions that arise in engi-
neering are non differentiable. This prevents the use
of powerful gradient-based numerical techniques - only
slower function-based methods are applicable. This is
especially true in the design task we are tackling.

Our research augments the traditional problem solv-
ing schema with the off-line knowledge compilation (or
learning) stage illustrated by the solid lines in Figure 1
on the right. The compiler uses a blend of novel and
traditional machine learning techniques to increase re-
liability and speed of the numerical optimization task.
These results are accomplished by reformulating at
compile time the design problem into subproblems and
by deriving:

0 Preprocessed objective functions for each subprob-

0 Search control knowledge that allows the problem

The preprocessed functions contain fewer independent
variables and have been greatly simplified. Therefore,
they are faster to evaluate. At run time, the problem
solver usea the search control knowledge derived dur-
ing compilation to retrieve a few candidate solutions.
Each of these candidatea is then given as input to a nu-
merical optimizer. However, in this case, the optimizer
is given a simplified objective function. The net result
is a speedup of as much as 95% over the run time of
the traditional methods and a more reliable numerical
optimization process. Being an off-line computation,

lem

solver to focus only on a few subproblems.

47

compilation does not introduce any overhead on the
run time operations.

The specialization of the objective function is di-
vided into two stages:
0 Elimination of independent variables
0 Identification of the “correct” abstraction to parti-

tion the function into convex regions.
Each of these two stages may require the reformula-
tion of the objective function. In mathematical d e
mains, the reformulation task consists in applying alge-
braic transformations to determine the “appropriate”
format of an expression. To accomplish this task, alge-
braic operations are treated as operators that modify
the function. Reformulation is also accomplished by
a representational shift which changes the coordinate
system from, say, polar to Cartesian. Further reformu-
lations takes place by choosing the appropriate origin,
scale, and orientation of the coordinate system. Each
of these operations can be considered as a reformula-
tion of the original expression. As in most other re-
formulation tasks, an exhaustive search of all possible
reformulations is unfeasible. Therefore, one must de-
vise techniques to control the search.
In our research the need for reformulation arose

during the elimination of independent variables. In
some cases, the original objective function was given
in Cartesian coordinates. This representation did not
allow any simplification. On the contrary, reformulat-
ing the function in a different coordinate system and
performing algebraic simplifications allowed the elim-
ination of independent variables from the optimiza-
tion process. This was possible because the reformu-
lation in polar coordinates revealed regularities among
variables. The regularities were detected during the
search and incorporated into the function represented
in the new coordinate system. Regularities are de-
tected by using a domain theory and heuristics such
as find equal angler. These heuristics detect reg-
ularities only when the a propriate representation is
chosen. In our solution (kerbone, 1992]), the search
for the “correct” representation, is aided by claeaify-
ing geometric entities (angles, points, linea, etc.) by
type. These types are then related to changes in the
representations.

A second important application of reformulation
techniques to optimization problem is the automatic
discovery of abstractions. In our solutions, we have
used abstractions to partition the original optimiz*
tion task into independent subproblem over convex
regions. In mathematical domains, the abstraction is
usually a function of the independent variables that
represents a change among stable states of the physi-
cal system. From a graphical standpoint, these changes
correspond to multi-dimensional ridges that separate
convex regions. To determine these abstractions the
system must first find the singularities of the objec-
tive function and then synthesize these findings into a

single expression. Given the parametric nature of ex-
presion, this task requlres interpolation over a multi-
dii: nsional parametrlc space. This is a complex task.
HL) I -ver, if one takes into account the physical mean-
ing of the regions of stability, it turns out that the de-
termination of the state changes is a simpler process.
In fact, we have used engineering intuition to partition
the optimization problem into convex regions. Details
of this process are contained in [Cerbone, 19921.

In conclusion, in this brief overview we have pre-
sented a few challenges that mathematical tasks
present to reformulation. We claim that mathemati-
cal tasks are an ideal domain for reformulation tech-
niques since they provide well-defined operators for
representational shifts and the possibility of measur-
ing the usefulness of a change of representation. On
the other hand, mathematical domains pose formidable
challeaqes that include a cont.nuum search space and
bride. n the gap between nurrv-rical data and a higher
level guage that is closer to *he experts’ intuition.

....................................
e..

..

Figure 1: Problem solving strategies in numerical op-
timization.

References
Cerbone, Giuseppe and Dietterich, Thomas G. 1992.
Inductive learning in engineering: A case study. In
Proceedings of the Adaptive and Learning Systems
Conference of the IEEE Society for Optical Engineers.
Cerbone, Giuseppe 1992. Machine Learning in Engi-
neering: Techniques to Speed up Numerical Optimiro-
tion. Ph.D. Dissertation, Oregon State University,
Corvallis, OR.

Ellman

Approximation, Abstraction and Decomposition in
Search and Optimization

Thomas Ellman
Department of Computer Science

Rutgers University
ellmanOcs.rutgers.edu

1. Synthesis of Search Control

One portion of my research has focused on auto-
matic synthesis of search control heurietics for con-
straint satisfaction problem (CSPs). I have developed
techniquee for automatically synthesizing two types of
heuristics for CSPs: Filtering functions are used to re-
move portions of a search space from consideration.
Evaluation functions are used to order the remain-
ing choices. My techniques operate by first construct-
ing exactly correct filters and evaluators. These oper-
ate by exhaustively searching an entire CSP problem
apace. Abstracting and decomposing transformatiom
are then applied in order to make the filters and evd-
uators easier to compute. An abatracting transforma-
tion replaces the original CSP problem space with a
smaller abstraction space. A decomposing tranefor-
mation splits a single CSP problem space into two
or more subspaces, ignoring any interactions between
them. Both types of transformation potentially intro-
duce errors into the initially exact filters and evaluk
tors. The transformations thus implement a tradeoff
between the coat of using filtera and evaluators, and the
accuracy of the heuristic advice they provide. I have
shown these techniques to be capable of synthesising
useful heuristics in domains such as floor-planning and
jobscheduling, among others. (See [Ellman, 19921.)

2. Synthesis of Hierarchic Problem

Another portion of my research is focused on automatic
synthesie of hierarchic algorithms for solving constraint
satisfaction problema (CSPs). I have developed a tech-
nique for constructing hierarchic problem solvers based
on numeric interval algebra. My system takea M inputs
a candidate solution apace S and a constraint C on
candidate solutions. The solution space S is assumed
to be a c a r t e a h product Rn where R is a set of inte-
gers. The constraint C is assumed to be represented in
terms of arithmetic, relational and boolean operations.
From these inputs the system constructs an abstract
solution space So as a Cartesian product R," where Ro

Heuristics

Solving Algorithms

is a set of disjoint intervals that covers R. The system
also constructs an abstract constraint Co on abstract
solutions. The abstract constraint Co is obtained from
the original constraint C by replacing ordinary arith-
metic Operations with interval algebra operations and
replacing boolean operations with boolean set opera-
tions. The abstract space So and abstract constraint
Co are then used to build a hierarchic problem solver
that operates in two stages. The first stage finds an
abstract solution in the space So of intervals. The sec-
ond stage refines the abstract solution into a concrete
solution in the original search space S. I have shown
thm approach to be capable of Synthesizing efficient
problem aolvers in domain8 such as floor-planning and
job-scheduling, among others. (See [Ellman, 19921.)

3. Decomposition in Design

Another portion of my reaearch is f o c d on auto-
matic decomposition of design optimization problems.
We are using the design of racing yacht hulls as a
testbed domain for this research. Decomposition is
especially important in the design of complex physi-
cal shapes such as yacht hulls. Exhaustive optimiza-
tion ie impoeeible because hull shapes are specified
by a large number of parameters. Decomposition di-
minishes optimization coats by partitioning the shape
parametera into non-interacting or weakly-interacting
sets. We have developed a combination of empiri-
cal and knowledge-based techniques for finding use-
ful decompositions. The knowledgebased method ex-
amines a declarative description of the function to be
optimized in order to identify parameters that poten-
tially interact with each other. The empirical method
runs computational experiments in order to determine
which potential interactions actually do occur in prac-
tice. We expect thie approach to find decompositions
that will result in faster optimization, with a minimal
sacrifice in the quality of the resulting design. Imple-
mentation and testing of this approach are currently in
progress. (I am pursuing this research in collaboration
with Mark Schwabacher.) (See [Ellman et a l , 19921.)

Optimization

49

4. Model Selection in Design
Optimization

Another portion of my research is focused on intelligent
model selection in design optimization. The model se-
lection problem results from the difficulty of wing ex-
act models to analyze the performance of candidate
designs. For example, in the domain of racing yacht
design, an exact analysis of a yacht's performance
would require a computationally expensive solution of
the Navier-Stokes equations. Approximate models are
therefore needed in order diminish the costs of analyz-
ing and evaluating candidate designs. In many si tua
tiom, more than one approximate model is available.
For example, in the yacht design domain, the induced
resistance of a yacht can be predicted by solving La
Place's equation - an approximation of Navier-Stokes
- or by using a simple algebraic formula. The two a p
proximations differ widely in both the costs of com-
putation and the accuracy of the results. Intelligent
model selection techniques are therefore needed to de-
termine which approximation is appropriate during a
given phase of the design process.

We have attacked the model selection problem in
the context of hillclimbing optimization. We have de-
veloped a technique which we call "gradient magnitude
based model selection". This technique is b d on the
obeewation that a highly approximate model will of-
ten suffice when climbing a steep slope, because the
correct direction of change L easy to determine. On
the other hand, a more accurate model will often be
kquired when climbing a gradual incline, beeawe the
correct direction of change is harder to determine. Our
technique operates by comparing the estimated e m r
of an approximation to the magnitude of the local gr&
dient of the function to be optimized. An appraxima-
tion is considered acceptsble as long as the gradient
is large enough, or the error is small enough, EO that
each proposed hillclimbing step guaranteed to im-
prove the value of the goal function. Implementation
and testing of thia approach are currently in progress.
I am pursuin this research in collaboration with John
Keane. (See fEllman et al., 19921.)

References
T. Ellman, J. Keane, and M. Schwabather. The rut-
gem cap project design wociate. Technical Report
CAP-TRI, Department of Computer Science, Rut-
gers University, New Brunswick, NJ, 1992.
T. Ellman. Idediration-based methode for con-
straint satisfaction problems. Working Notea of the
AAAI Workshop on Approximation and Abstraction
of Computational Theories (Forthcoming), July 1992.

50

Giuchiglia

Abstraction and problem reformulation

Fau s t o G i u 11 c 11 i g 1 ia

IRST
38050 Povo, Trento, Italy

Mechanized Reasoning Group .- 1L; - & 3
+-’, ’ - 9‘

In work done jointly with Toby Walsh, the author has
provided a sound theoretical foundation to the pro-
cess of reasonin with abstraction [G\?V90c; GWSS;
GW9Ob; GW90aT. The notion of abstraction fornial-
ized in this work can be informally described as:

[property 1] t h e process of mapping a repre-
sentation of a problem, called (following histori-
cal convention [Sac74]) the “ground’ representation,
onto a new representation, called the “ab~froc t“
representation, which:

[property 2] helps deal with tlie problem in tlie
original search space by preserving certain de-
sirable properties and

[property 3] is simpler to handle as it is con-
structed from the ground representation by “throw-
ing away details”.

One desirable property preserved by an abstraction is
provability; often there is a relationship between prov-
ability in the ground representation and provability in
the abstract representation. Another can be deduc-
tion or, possibly inconsistency. By “throwing away de-
tails” we usually mean that the problem is described
in a language with a smaller search space (for instance
a propositional language or a language without vari-
ables) in which formulae of the abstract representation
are obtained from the formulae of the ground represen-
tation by the use of some terminating rewriting tech-
nique. Often we require that tlie use of abstraction
results in more efficient .reasoning. However, it might
simply increase the number of facts asserted (eg. by
allowing, in practice, the exploration of deeper search
spaces or by implementing some form of learning).
Among all abstractions, three very iinportant classes
have been identified. They relate the set of facts prov-
able in the ground space to those provable in the ab-
stract space. We call:

0 TI abstractions all those abstractions where the ab-
stractions of all the provable facts of the ground
space are provable in the abstract space;
TD abstractions all those abstractions where the

lg6O k
A’//

“unabstractions” of all the provable fa ts of the ab-
stract space are provable in the ground space;
TC abstractions all those abstractions where a fact
is provable in the ground space if and only if its
abstraction is provable in the abstract space.

IIistorically the word abstraction has been mainly used
with a much more restricted meaning which captures
its use in problem solving and planning (for instance
in Abstrips or Soar). Our notion of abstraction (and
in particular the three classes defined above) turns out
to capture and provide and unifying framework for de-
scribing work done in the definition of decision pro-
cedures (see for instance [DG79; GiuSl] , in planning
and problem solving (see for instance t Sac73; E1190;
klN9l; I<n089]), explanation (see for instance [Doy86]),
common sense reasoning (see for instance [Hob85]),
qualitative and model based reasoning (see for instance
[MozgO; Welgl]), approximate reasoning [Imi87]), anal-
ogy (see for instance [Ble90]) and reasoning with very
large data bases (see for instance [Lev92]).
At a close look abstraction seems also very related to
problem reformulation. In particular it seems that
problem reformulation can be characterized as using
some of the subclasses of TC and T D abstractions in-
troduced in [GWgOc]. A positive feedback on this
intuition would allow to use the framework described
i n [GW90c; GW89] to put the work on problem refor-
iiiulation on a more solid ground and, at the same time,
to study and compare the techniques used in problem
reformulation with the techniques used in all the other
areas captured by tlie framework.

References
\\’.JV. Bledsoe. A precondition prover for analogy. CS
Dept. memo, 1990.
B. Dreben and W.D. Goldfarb. The Decision prob-
lem - Solvable classes of quanfificoiional formulas.
Addison-Wesley Publishing Company Inc., 1979.
R.J. Doyle. Constructing and refining causal expla-
nations from an inconsistent domain theory. In Proc.

51

Fifth Nafional Conference on Ariificial Inielligence,
Philadelphia, PA, 1986. AAAI.
T. Ellman. Mechanical generation of heuristics
through approximation of intractable theories. In
Working Noies of A A A I Worksliop o n Auloniaiic
Genemiion of Approzimafions and A bsiractions,
Boston, MA, 1990.
E. Giunchiglia. A set of hierarchically structured de-
cision procedures for some subclasses of First Order
Logic. In Proceedings 3rd Scandiiraviun Conference
on Artificial Inielligence, Itoskilde University, Den-
mark, 1991. Also available as MRG-DIST Technical
Report 9101-01, University of Genova, Italy.
F. Giunchiglia and T. Walsh. Abstract Theorem
Proving. In Proc. IJCAI 89, 1989. IRST Techni-
cal Report 8902-03. Also available as DAI Research
Paper No 430, University of Edinburgh.
F. Giunchigliaand T . Walsh. Abstraction in AI. A I S B
Quarterly, 73:22-26, 1990.
F. Giunchiglia and T. Walsh. The inevitability of
inconsistent abstract spaces. Technical Report goo!;-
16, IRST, Trento, Italy, 1990. Also available as D A I
Research Paper, University of Edinburgh. Accepteu
to the Journal of Automated Reasoning.
F. Giunchiglia and T. Walsh. A Theory of Abstrac-
tion. Research paper no. 510, Dept. of Artificial Intel-
ligence, University of Edinburgh, 1990. Also available
as IRST-Technical Report 9001-14. To appear in Ar-
tificial Intelligence.
J.R. Hobbs. Granularity. In Proc. 9Lh IJCAI confer-
ence, pages 432-435. International Joint conference
on Artificial Intelligence, 1985.
T. Imielinski. Domain abstraction and liinited rea-
soning. In Proc. 10th IJCAI conference, pages 997-
1003. International Joint Conference on Artificial Iii-
telligence, 1987.
C.A. Knoblock. Learning hierarchies of abstraction
spaces. In Proc. S i t f h Ininl. Worksliop on Machine
Learning, 1989.
A.Y. Levy. Irrelevance in problem solving. In Sub-
miiied to AAAI-92 , 1992.
I. Mozetic and C. Holzbaur. Estending EBG by ah-
straction operators. In Proceedings E IVSL-91, Porto,
Portugal, 1991. Springer-Verlag.
I. Mozetic. Abstractions in model-based diagnosis.
In Working Noies of AAAI-90 Workshop on Atilo-
m a f i c Generaiion of Approtiniaiiotrs ntrd .A bsirac-
i ions, pages 64-75. AAAI, 1990.
E.D. Sacerdoti. Planning in a Hierarcliy of Abstrac-
tion Spaces. In Proc. 3rd IJCAI conference. Inter-
national Joint Conference on Artificial Intelligence,
1973.
E.D. Sacerdoti. Planning in a hierarchy of abstraction
spaces. Arfificial Intelligence, 5:115-135, 1974.

D.S. Weld. Reasoning about model accuracy. Techni-
cal Report 91-05-02, University of Washington, Dept.
Computer Science and Engineering, 1991.

5 2

Gordon

Queries for Bias Testing
1

c -'

Diana F. Gordon
!/.? 4 ' I (/ /

Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory, Code 5510

Washington, D.C. 20375
gordon@aic.nrl.navy.mil

q-

Absrraa
Selecting a good bias prior to concept leaming

can be diftkult. Therefore, dynamic bias adjustment is
becoming increasingly popular. Current dynamic bias
adjustment systems, however, are limited in their abil-
ity to identify emneous assumptions about the rela-
tionship between the bias and the target concept.
Without proper diagnosis, it is difkult to identify and
then remedy faulty assumptions. We have developed
an approach that makes these assumptions explicit,
actively tests them with queries to an oracle, and
adjusts the bias based on the test results.

1 Introduction

to an incremental concept learner to improve the
learner's performance.

Unlike previous approaches to bias testing, our
approach uses formal definitions of assumptions about
the bias, called biasing arsumptwns, to guide an
analysis of why the bias is inappropriate (e.g., too
weak, or incorrect) for learning the target concept.
An example of a biasing assumption is the irrelevance
of a feature for learning the target concept. The bias
testex performs this analysis (called a biusing ussump-
rwn r m r) by actively testing the bias with queries to an
oracle. Each query is a request to an instance genera-
tor for a new instance. For example, the irrelevance of
a feature might be tested by querying an oracle for the

includes the k g e t concept. A shung c w t bias, e.g.,
one with fewer features. is generally desirable because
it reduces the number of hypothesis choices and
thereby promotes rapid convergence to the target con-

Our approach has three primary advantages.
Firsl, the bias tests c ~ p o s e d of queries. Queries
can aceleaate learning Sif i f imdY (see Gordon
1990, 1992)- second. O w is designed to be
incorporated into an existing concept learner. Third,

bias and the target concept. Proper diagnosis aids in
the recovery from faulty assumptions. We have
developed an approach to bias adjustment that
a&- this for proper diagnosis. our m e w
consists of a bias tesw and adjuster that can be added

In our framework, the bias is the set of feawes
and their V a l u e s in the hypothesis language. These
values appear in voluc trees (e&, see Figure 1). which
are input by a user or knowledge engineer who is
somewhat familiar with the &main. Value v e e ~ are

53

t y p i d y called generulizarion trees because parent
nodes are mom general than their child nodes. Train-
ing instances are described in terms of leaf node
values. Throughout this paper, we assume the concept
leamer begins with hypotheses described in terms of
the instance language and evolves its hypotheses
(pertraps using the value trees) in a specific-&general
direction. Generalization increases the generality of
values within a particular hypothesis; ubstrarion
increases the generality of the hypothesis language.
The concept leamer can use value trees for generaliza-
tion. Our approach to bias testing and adjustment uses
value trees for abstraction. Bias strengthening implies
removal (i.e., abstraction) of a feature or feature value
distinction fiom the hypothesis language. This shrinks
the hypothesis space. Bias weakening implies the res-
taration of features or feature value distinctions. This
wealrening undoes abstraction and enlarges the
hypothesis space. Bias weakening is defined to be
minimized when the features and feature value distinc-
tions that are restored to the language are restricted to
those that must be restored to c o m t the bias.

The drawback of our approach is that it requires
an oracle that can respond to queries during learning.
The oracle can be either a human or the environment.
In either case, it is not always practical to require an
oracle. Humans may be too busy to amwe? questions.
Furthennore, the use of the environment as an oracle is
impractical if lives an at stake. For example, it is
unreasonable to query whetha a new chemical
weapon is efbective at killing people. On the other
hand, it is prrlctical to quay whether small doses of
Vitamin C cue the common cold.

Using Figure 1, we can see how a bias may be
strengthened, weakened, and minimally weakened.
Suppose the bias is all the trees in Figure 1, and the
target concept states that small bricks are positive and
instances of any other dcsaiption are negative. Thc
bias might be strengthened by removing all features
other than “&E” from the hypothesis language. This
bias is incorrect because “shape” infonnation is also
needed to lcam the target concept. One way to
weaken and cmect the bias is to restore the original
language. Altemacivcly. we can minimally weaken
the bias by restaring parts of the “shape” value tref
but none of the “material” tree. Within the “shape”
tree, we restore the “cube’*/“”ick“ distinction and
above, and restore the “curved-solid” node, but do
not restore any child of the “curved-solid” node.
Removing a distinction strengthens the bias to create
an abstraction, whereas restohg it weakens the bias

to undo the abstraction.
Section 2 formally defines two important bias-

ing assumptions and then collapses them into one.
Section 3 presents and analyzes algorithms to test the
collapsed assumption. Section 4 summarizes and
explains empirical results. Finally, Sections 5 and 6
present related work and a summary of the paper.

2 Biasing Assumptions
When supervised concept leamers shift their

bias, they t y p i d y make an implicit biasing assump
tion that the bas shift is correct for learning the target
concept. Our approach makes each biasing assump
tion explicit, and associates each assumption with an
abstraction operator. If the assumption holds, the

We assume two abstraction operators: climb-
valrrc-treecf,a) and remve-fcurwe(f). The climb-
valuetree(fp) operator replaces values of feature f
that are lower in the value tree (e.g., “cube” and
“brick” in Figure 1) with a value u (e.g., “prism”)
that is higher in the tree throughout the hypothesis
language. Thc remove-featurev) operator eliminates
featureffrom the hypothesis language. We associate a
cohesion assumption with climbvalue-me(f,u).
Cohesion implies that the values below u in the value
tree off an umwewry for predicting the urger con-
cept membership of instances. We associate an
irrelevance assumption. which is quivalent to cohe-
sion at the rooc node of a value tree, with drop
feaauev). Irrelevance implies that the feature to be
removed is unnecessary for predicting the target con-
cept membership of instances.

The following are the formal definitions of the
two biasing assumptions. These definitions are
tailorexi for an incremental concept learning context.
We assume one new instance is accepted at a time and
all previous inseances an saved. Furthermore, we

instance features are sufficient to distinguish positive
from negative instances. though pahaps not ideal for
leaming the targer c011cept. We abbreviate the set of
all known positive instances at time r with POS(r), the
set of all known negative instances at time r with
NEG(r), the set of all positive instances with POS, and
the set of all negative instances with NEG. We abbre-
viate the new instance at time r with i(r), the target
concept with TC, the irrelevance biasing assumption
with IRR (f,TC,r) for feature f, and the cohesion bias-
ing assumption with COH(u.TC.r) for value u.

corresponding abstraction operator can 6re.

assume that the instances an not noisy and that the

54

FIG. 1. Value trees.

For the following definitions, if i (f) is positive,
we let L (f) e O S (f) {i(t)J) and b p O S or we let
L(f)=NEG(r) and LrNEG. Likewise, if i (t) is nega-
tive. we let L(f)--(NEG(f) u {i (r)]) and k N E G or we

nodes {ul,uJ below value (node) u in the value
tree appear to behave equivalently with respect to tar-
get concept membership. Let A = {ai.. . . .ad. Let
1GSn and KjW. The formal definition is:

COH(u,TC,f) c)
let L(f)=pOS(f) and Isms.

(Wvl ,...,v,XYaj E AM(- E (0)
(f i (~ v 1) &..A f;(x,uj)
((Vu& E A W ~ X (f i 0 1 , v l) & A f i o l ~ d
+ 01 E U)))).

Let {fi, . . .fJ be the S t of features Considered

subscript used in the following definitions. Finally, we
relevant as of time (f - 1). Let lSSn, where i is the

define f;(x,vi) to mean that the value of feature f; for
instance x is vi. Although the instance language con-

fn(xtvn))) +
f n o l s v n))

sists Of value tree leaf nodes' a 'Ode can also

We allow vi to be either a leaf or nonleaf node in the
following dehitions. "he formal definition of the
irrelevance biasing assumption is:

In other words, cohesion holds for value u for leaming

in any
known instance always yields a (new or old)
whose classification is the same as that of x. Note that

be used to an instance, though not TC he if the replacement of one descendent
of with

In other w0rds.f; is considemi irrelevant to leaming
TC at time t if changing the value off;: in any known
instance x always yields a (new or old) instance whose
classification (positive/negative) is the same as that of

Next, we define the cohesion biasing assump
tion. The cohesion of value u with respect to the tar-
get concept, CUH (a,TC,t), means that the descendent

X .

irrelevance is a sptcial case of cohesion that occurs
when u is the root node of a value tree. Therefore,
these two assumptions can be collapsed into one. Let
us caU the collapsed assumption IRR <OH (u.TC,t).
The definition of this collapsed assumption is identical
to that of COH(U,TC,f).

3 Queries for Testing the Biasing
Assumptions

The definitim of IRR-COH(u,TC.r) presented
in the last section has been translated into algorithmic
biasing assumption tests. This section presents the
algorithms for these tests. Then an two types of

5 5

biasing assumption tests, corresponding to the two
times at which tests are executed. Each type is associ-
ated with a separate algorithm. One type of test (in
Section 3.1) executes before bias shifting, and the
other type (in Section 3.2) executes after bias shifting.

Like the definition on which they are based, our
biasing assumption tests are tailored for incremental
concept leaming. If an assumption test is satisfied,
then the corresponding biasing assumption is con-
sidered valid, and therefore it is “safe” to implement
the abstraction corresponding to this assumption. If
the test is not satisfied, comt ive action may be
required.

We assume that our approach to bias testing and
shifting is added to an incremental concept leamer that
maintains two Disjunctive Normal Form (DNF)
hypotheses: one that covers all previously seen posi-
tive instances and one that covers al l previously seen
negative instances. The flow of control begins when a
query to the instance generatar requests a new
instance. When the new instance is received by the
concept learner. the leamer uses its hypotheses to
predict the class of this instance. The leamer then
consults an oracle to find out the uue class of the
instance. If enough instances have been seen at this
time to complete an assumption test, the bias is shifted
according to the test results. Next, the leamer updates
its hypotheses to preserve completeness and con-
sistency. Completeness implies the positive
hypothesis covers all known positive instances and the
negative hypothesis covers all known negative
instances. Consistency implies the positive hypothesis
covers no known negative instances and the negative
hypothesis covers no known positive instances. ‘Ihese
steps are repeated until the user decides the target con-
cept has been learned. For more details see (Gordon
1992).

We inaoduce four types of queries to facilitate
concept leaming with bias shifts: bias strengthening
queries, bias wukening queries, cowlterexumple
queries, and r&m i n s m e queries. An assumption
test is a sequence of bias strengthening queries or a
sequence of bias d i n g queries. Bias strengthen-
ing queries test abstractions before they are made, bias
weakening queries retest abstractions after they have
been made. The last two types of queries are not part
of assumption tests, but they are useful for other rea-
sons. The purpose of counterexample queries is to find
out whether the bias is incorrect. If an incorrectness is
found, the bias weakening queries then determine why
the bias is incorrect. The purpose of the random

instance queries is to generate instances for concept
leaming when none of the other queries applies. All
queries except the bias weakening queries request
instances not previously seen. Bias weakening queries
try to use previously seen instances before generating
new ones because they retest previously held assump
tions, and the necessary instances to do this are often
M Y present.

Random instance and counterexample queries
are simple, so we describe them fust. Random
instance queries are requests to the instance generator
for randomly generated (previously unseen) instances.
Counterexample queries can provide counterexamples
bezause they are requests for randomly generated
(unseen) instances that are covered by one of the
hypotheses. A negative instance covered by the posi-
tive hypothesis is a counterexample, and a positive
instance covered by the negative hypothesis is a coun-
terexample.

3.1 Bias Strengthening Queries
Bias strengthening queries test whethes the bias-

ing assumption associated with a potential abstraction
holds. To do this, these queries test nodes of the value
trec Mow the potential abstraction. If these values do
not scem useful for distinguishing target concept
membership, the abstraction is madc.

l k Bssumption tests that use bias strengthening
queries and arc executed prior to abstraction may be as
rigcwous as desind. Tests that use more queries are
mom rigorous. (GorQn 1990) describes a method for
varying the rigor of these tests. Increasing the rigor
can reduce the n u m b of prediction errors. but it can
also significantly incnast the cost of the tests. For
example, suppose we wish to test the cohesion of
value u of featuref. Let us consider how we may vary
the rigor of tests that are based on the formal definition
of IRR-COH(u,TC,r) in Section 2. We can increase
the rigor with which we test the cohesion assumption
by the following two methods: (1) Increase the
numbex of valucs uk from A to substitute for the origi-
nal value u, before assuming cohesion holds, (2)
Increase the n u m k of instances x whose f value is
varied before assuming cdresion hob. (Note that
each x camsponds to a unique choice of values for v1
through v,.) Either of these methods will increase the
number of queries.

Here, we describe an algorithm that does not
have v a y rigorous assumption tests and is therefore
not excessively costly. It is not very rigorous because
only one sibling of the original value is tested for each

56

hypothesis disjunct before making an abstraction, and
because hypothesis disjuncts, rather than instances,
have their values varied. There are typically far fewer
disjuncts than instances. Our algorithm for generating
bias strengthening queries to test biasing assumptions
is the following:

Repeat the following until no more unseen. uncovered
instances i a can be generated:

For each instance feature f do
Find the value u that is the parent node of the
value off in some (arbitrary) disjunct of one of
the two hypotheses. The value u is a potential
abstraction to be tested. If this value has been
tested previously. then select another value for
u from another disjunct.
For each (positive, negative) hypothesis h do

(1) Find f(x,v), a conjunct of disj. If
none exists, or if v is not a child of u, try
another disjunct.
(2) Set SIBLINGS equal to the set of all
siblings (which share a parent node a) of
v in the value tree off. These siblings
are children of u.
(3) Select s E SIBLINGS.
(4) Replace “Ajc,v)” in &j with
“Ajrj)” to form d’. Then form a poten-
tial instance i’ that satisfies d’ by
aanslating d’ to the language of the
instances, which consists of leaf values
in the value trees. When translating to
leaf values, the choice of a descendent
of a higher level value is random.
Check to see that i’ is not already
covered by the hypothew and has not
been seen yet. If i’ is uncovered and
unseen, request i’ from the instance gen-
erator and continue. Otherwise, try
other choices of leaf value descendents
until they haveall been tried. Ifthe des-
cendents have all been tried, then go to
step (3) to find another sibling.
(5) Accept i ‘ from the instance genera-
tor and consult the oracle for the class of
i *.

For each disjunct &j of h do

Endfor
Endfor
(If the assumption test for abstraction u has
succeeded at this point, the bias adjuster makes
the abstraction.)

Endfor

This algorithm executes a sequence of biasing
assumption tests. Each biasing assumption test
corresponds to a test of an abstraction u. This test con-
sists of a sequence of queries that vary the values in
the hypothesis disjuncts. To ensure that these queries
do not overlap with the other query types, bias
strengthening queries only request instances that are
not covered by either of the hypotheses and have not
yet been seen. To form each bias strengthening query,
this algorithm selects one feature f of one disjunct of
one hypothesis h and alters the value of this feature.
This is a form of pcrturbarion (hrter & Kibler 1986).
The value of f that is perturbed is a child, i.e.. an
immediate descendent, of the abstraction u in the
value tree. Ihe new value obtained through perturba-
tion is a sibling of the original value, Le., both values
are children of u in the value tree. This new value is
substituted for the old value in the hypothesis disjunct,
and an instance that matches this description and has
random values for unspecified features is requested.

Let us assume the algorithm is testing abstrac-
tion u. For each hypothesis h. suppose perturbing the
value off in all disjuncts of h yields only instances
whose class is the same as that of h. Then nodes in the
value tree below u do not stem to be useful for distin-
guishing positive from negative instances (though this
assumption might lata be proven wrong). Thus, the
abstraction to u is permissible and can therefore be
made by the bias adjuster. In other words, the biasing
assumption test for abstraction u is satisfied. On the
other hand, if an instance of a dif6erent class is gen-
erated, the abstraction cannot be made because the
biasing assumption test is not satisfied.

Because we assume the hypotheses begin with
the language of the instances. which consists of leaf
values in the value trees. this algorithm tests abstrac-
tions one value tree level at a time, beginning one
level up from the leaves. For example, when using the
“makrial“ tree of Figure 1. the language shift to
“alloy” would be tested before the language shift to
the root node “any material”.

We can now see how this algorithm carresponds
to the fonnal definition of IRR-COH(u.TC,r) in Sec-
tion 2. For each disjunct d of hypothesis h. we let x
(from the assumption delinition) be any instance
covered by d. We also let v 1 through v, be the feature
values present in d. To perturb the value of feature fi,
our algorithm selects an uk for the sibling value. If the
substitution of uk into d yields a new instance whose
classification dim from that of x. the assumption
being tested does not hold. On the other hand. if the

57

substitution of uk’s into every disjunct of h yields only
instances of the same class as x, our assumption passes
the test and is considered to hold. The pemrrbation
values ak are children of node u in a value tree, where
a is the abstraction being tested. If u is the root node of
the value tree, our algorithm tests the irrelevance off.
Otherwise, our algorithm tests the cohesion of u.

An upper bound on the number of bias
strengthening queries generated by this algorithm is
O(F D * d), where F is the number of instance
features, D is the maximum number of disjuncts in the
two hypotheses, and d is the maximum depth of a
value tree. The branching factor of the value tree is
not included in the cost of this algorithm because to
test each abstraction only one sibling value is
requested for each disjunct

To illustrate bias strengthening queries, suppose
we are testing the feature ‘‘sW*, where the features
and trees of Figure 1 are used. Furthennore, suppose
feature “material“ is considered irrelevant and has
been removed from the hypthesis language, and the
current hypotheses are:

NEGHYP:(xI
(size(xJne!d.ium) & shape(x,cylin&))).

Then a bias strengthening query to test the abstraction
to “any size” is formed by using the first disjunct of
the positive hypothesis to request a medium brick (or
large brick) that has a randomly chosen value for
“material”. Then the second disjunct of the positive
hypothesis is used to request a small sphere (or
medium sphere), and the only disjunct of the negative
hypothesis is used to reques! a small cylinder (or
large cylinder), each with randomly chosen values for
“material“. If the first two instances arc positive and
the third instance is negative, then “size” is con-
sidered irrelevant and is removed from the hypothesis
language by the bias adjuster. An abstraction is
created when “size” disappears from the hypMhesis
language. On the other hand, if any of the requested
instances has a &&rent classification than the
hypothesis from it was derived (e.g.. the first instance
is negative), then the abstraction is not created and
“sk“ remains in the hypothesis language.

3.2 Bias Weakening Queries
Because the algorithm of Section 3.1 does not

exhaustively test the biasing assumptions (e.g., only
one sibling value per disjunct is tested before creating
an abstraction), abstractions made after Nnning this
algorithm cannot be guaranteed to be correct. There-
fore, bias weakening queries are needed to retest the
abstractions afm a prediction error in case the predic-
tion error is due to an incorrect abstraction rather than
a generalization error. These queries perturb the
values of the description of the instance for which a
wrong prediction has been made to isolate erroneous
abstractions that might have caused the error.

Suppose a wrong prediction is made on a new
instance i, and H is the hypothesis whose class difirs
from that of i. Then the following is our algorithm for
generating bias weakening queries following a wrong
prediction:

Form the set A of all abstractions pFesent in the
hypothesis language (and in H) that apply to i. These
are the abstractions to be tested. Elements of A arc

For each (f,u) E A that is not already known to be

LetL be the set of all leaves in the value tree forf
that an below a.
ForeachvELdo

feature-value pairs.

faulty do

(1) Substitute v for the corresponding feature
value in the description of i to form a new
description of i’. If i’ has not yet been seen.
ask the concept leamer to predict then get the
actual class (fnwn the oracle) of i’. Otherwise,
use the known class of i’.
(2) Ifthe class of i’is the same as that of i then
loop again to find another element of L. Other-
wise, mord %a) as being faulty and abort this
loop through the values of L to get another ele-
ment of A.

Endfor
Endfor

An abstraction applies to an instance if it has a value
of featurefthat is more general than the value offin
the instance. In other words, the abstraction must be a
value tree ancestor of the value offin the instance.

This algorithm retests the biasing assumption
associated with each abstraction u. The values for per-
turbation are leaf nodes in the value m below the
abstraction u being tested. A feature value of i is
varied by substituting a perturbation value into the

58

description of i and requesting an instance of this new
description from the instance generator along with the
class of the requested instance. If perturbing any of
the values of i causes the generation of a new instance
of a different class than i, then the abstraction being
tested by pertu&ation is faulty. This abstraction is
faulty because it removes a distinction that is below it
in the value tree and that is necessary for predicting
target concept membership.

Although bias weakening queries do not retest
all biasing assumptions, they rigorously retest all bias-
ing assumptions associated with abstractions that
apply to i. Therefore, they identify all biasing assump
tion errors that caused the error in predicting the class
of i. By doing so, these queries c m t the bias in a
way that enables the concept learner to regain con-
sistency and completeness with respect to all previous
instances. including i. We consider this testing to be
rigorous because all descendent (leaf) values are
tested until a value is found that disallows the abstrac-
tion. If none is found, the concept leamer regains con-
sistency and completeness without bias shifts.

Similarly to Section 3.1. we can see how this
algorithm corresponds to the formal definition of
IRR -COH (u,TC,t) in Section 2. This algorithm alters
the value off in the new instance i for which a wrong
prediction has been made to create queries that request
new instances. The algorithm then tests whether these
newly-created instances have the same classification
as i. The instance i plays the role of x in the
definitions, and the perturbation values are the uk’s. If
the abstraction u being tested is a mot node value of a
value tree, this algorithm tests the irrelevance off.
Otherwise, the algorithm tests the cohesion of u.

A is the set of all absaactions that apply to i. If
F is the number of instance feahues, then the max-
imum size of A is F. This is because, for each instance
feature f. only one ancestor (in the value tree) of the
value off in i will be in the hypothesis language at a
particular time, and there are at most F features in the
hypothesis language. In other words, for each f, there
exists at most m (f1u) E A. Furthemore, for each
@a) E A, this algorithm tests all leaf node descendents
of u. The= m at most bd of these descendents, where
d is the maximum depth and b is the maximum branch-
ing factor of any value tree. Therefore, an upper
bound on the number of queries generated by this
algorithm is O(F * bd). This algorithm is executed for
each instance i for which the concept leamer makes a
wrong prediction.

To illustrate bias weakening queries, we con-
tinue with the example in Section 3.1. Suppose the
bias strengthening queries cause “size” to be con-
sidered irrelevant and removed from the hypothesis
language. The hypotheses are now:

NEG HYP: (x I (shape(x,cylinder))).

If a large copper brick is not among the known
instances. and a counterexample query requests one,
and this instance is negative, then the concept learner
will incorrectly predict the class of this instance. Bias
weakening queries now perturb the description of this
insrance to determine the source of the prediction
m r . perturbation to test the abstraction to “any
size” might result in a request for an instance that is a
small copper brick. If this example is positive, the
assumption that “size” is irrelevant for distinguishing
targct concept membership is incorrect. If this
instance is negative, the next query might be a request
for a medium copper brick.

After bias weakening queries identify incomct
biasing assumptions. the bias adjuster weakens the
bias to correct it. In the example just described,
“size” would have to be restored to the hypothesis
language to distinguish the small copper brick that is
positive from the large copper brick that is negative.
After the bias has been corrected, the concept leamer
relearns the instances to reform the hypotheses with
the new language bias. The bias weakening queries
enable bias weakening to be minimized because they
identify the incorrect biasing assumptions. All
assumptions not proven incorrect (in the past or the
present) can be assumed to hold and can therefore be
preserved during relearning.

3 3 Order of the Queries
The orda for selecting the queries is as follows.

Ihe first query is a random instance query; the next
query is a bias strengthening query. Bias strengthen-
ing queries continue as the default unless one of the
following holds: (1) complucency occurs; (2) the con-
cept learner makes a prediction e m c or (3) no bias
strengthening query can be formed.

Complacency is defined to occur when the con-
cept leamer has made four consecutive, c m t predic-

59

tions.' A String of c o m t predictions indicates either
that the concept has been leamed or that counterexam-
ples to the current hypotheses should be sought Since
it is not possible to know for certain whether the
c m t concept has been learned, counterexample
queries occur in response to complacency. Bias weak-
ening queries are the response to prediction errors.
Once the diagnosis performed by these queries is com-
pleted, the bias strengthening queries resume until
complacency occurs. If none of the other queries can
be formed, random instance queries are generated.
Counterexample queries can be formed only if they
generate unseen instances that are covered by the
current hypotheses. Bias strengthening queries can be
fonned only if they generate unseen instances that are
not covered by the current hypotheses.

4 Results and Cost/Benefit Analyses
In this section, we summarize previously pub-

lished empirical results. We then explain these results
from three perspectives: system bias aDpropriateness, a
query cost analysis. and a query benefit analysis.
Finally, we present an example that illustrates why our
approach is effective.

4.1 Empirical Results
We have added an implementation of our

approach to bias testing and shifting to an incremental
concept leamer to form a system called PREDICTOR
(Gordon 1990.1992). In the experiments of (Gordon
1992). PREDICTOR'S pexformance is compared with
that of a baseline system called Iba's Algorithm Con-
cept Learner (IACL), which is based on an algorithm
from (Iba 1979). PREDICTOR is built on top of IACL
by extending IACL's bias Shifting capabilities. PRED-
ICTOR is identical to IACL in all ways except two:
the former system tests the bias prior to bias shifting
whereas the latter does not, and the former system
prefers a stronger bias than the M e r system. Both
systems consult an oracle to answer membership
queries. IACL's membership queries are quests for
randomly chosen instances. Also, both systems can
shift the bias. However, IACL, like ID3 (Quinb
1986) and a numbex of other concept l m , inter-
leave~ hypothesis election and tenn (feature) = l a -

The empirical experiments of (Gordon 1992)
demonstrate that when its method is appropriate,
PREDICTOR produces an order of magnitude
improvement in the rate of convergence to the target
concept and its negation over IACL. The empirical
experiments of (Gordon 1990) demonstrate that, when
appropriate. PREDICTOR has a better convergence
rate than all the other systems with which it has been
compared (IACL, a variant of ID3, and a version of
AQ described in Michalski et al. 1986). If inappmpri-
ate, however, PREDICTOR produces a performance
degradation with respect to IACL and the other sys-
tems. PREDICTORS method is approPriate precisely
when one would expect it to be - when bias shifting is
the most expedient action to take to leam the target
concept, i.e., there is a large disparity between the
insstance language and the language in which the target
concept can be expressed most succinctly.

It is easy to see how this disparity would be
likely to occur in many real-world leaming situations.
Most objects are described in terms of primitive
fames. It is reasonable to expect that a knowledge
engineer, who is familiar with the domain in which
concept leaming will occur, would be aware of a
numba of potentially useful abstractions but would
not be certain which abstractions are relevant for
leaming the concept. Therefore, this engineer might
have the system begin with the known primitive
features, but provide the system with potential abstrac-
tions. When provided with a set of potentially useful
value trees, PREDICTOR'S queries can isolate those
abstractions which are ccxrect and thereby expedite
the leaminP Mocess.

From an experimental study described in (Gor-
don 1992). we have learned that PREDICTOR has a
synergistic ef€ect between its bias shifting method and
its bias tests. The system's bias shifting method pro-
motes this synagy because few bias strengthening
queries are required before an abstraction occurs.
(Recall from Section 3.1 that the number is propor-
tional to the number of hypothesis disjuncts.) Further-
more, the system minimally weakens the bias after a
set of bias weakening queries (see Gordon 1992). In
both cases, PREDICTOR is able to capitalize on the
query results to gain and maintain a strong bias.

tion. For IACL. bias shifting is not a deliberate. high-
priority task as it is for PREDICTOR. 4.2 System Bias Appropriateness

In this paper, we use the tenn "bias"
synonymously with "hypothesis language bias". This

' 'Ibe Of Wdmr w" - by is the bias that PREDICTOR adjusts. In this section,
we will discuss a mem-level bias, namely, the sysrem empirical 1cN.

60

biar. To avoid confusion with the hypothesis language
bias, hereafter, we refer to the system bias as the
system policy or simply the policy as in (Provost &
Buchanan 1992). At some level, all concept leaming
systems have some fonn of fixed system policy. For
example, even the most adjustable system cannot
implement all possible bias adjustment methods. The
choice of bias adjustment methods is a fixed system
policy. No one policy can be best for leaming every
target concept. Therefore. we need to develop an
undersranding of the appropriateness of system poli-
cies for learning di&mnt classes of concepts.

PREDICTOR'S policy is its implicit assumption
that absuaction is appropriate to try (by strengthening
the language bias) and to retain (by minimally weak-
ening the language bias) as much as possible.
Strengthening and minimally weakening the bias are
appropriate when they are the c o m t actions to take
in the context of the current instance language and tar-
get concept.

PREDICTOR'S bias strengthening and weaken-
ing queries, which form the maprity of the system's
queries, are geared entirely toward garhering informa-
tion for bias shifting. This system uses its queries to
reorder the instances to increase its information gain
about the hypothesis language bias early in the leani-
ing process. Bias shifting is its priority. If this priority
matches the task, PREDICTOR usually outperforms
all other systems with which it is compared. This is
because once PREDICTOR'S queries have achieved
their goal of a strong correct bias, the number of
instances requhd to converge on the target concept is
often significantly reduced by this bias shift (see Sec-
tion 4.4).

Although IACL can adjust the hypothesis
language, PREDICTOR generally far outperforms
IACL when bias shifting is important. This is because
IACL's policy places a higher priority on finding less
general hypotheses and also on maintaining hypothesis
consistency and compktenes with previous training
instances than it Qes on bias shifting (see Gordon
1992). This system only shifts the bias when it
decides this is the best way to achieve its other priori-
ties. IACL's queaies are requests for randomly-
generated instances, Therefore, this system does not
favorably order the instances for gathering informa-
tion about the bias. The other systems with which
PREDICTOR has been compared have problems that
are similar to IACL's.

In the next two sections, we present cosr/benefit
analyses that further explain the empirical results.

4 3 Query Costs
The upper bounds on PREDICTOR'S queries.

presented in Sections 3.1 and 3.2, seem somewhat
high. Why does this system generate fewer queries
(converge earlier) than IACL when bias shifting is
appropriate for learning the target concept? Why does
it generate more queries than IACL when it is inap-
propriate? In this section, we present a rough cost
comparison between the number of queries generated
by PREDICTOR and the number generated by IACL.
To simplify our analysis and avoid a confusion
between the e&ts of generalization and those of
absuaction, let us suppose that no generalization is
needed for learning the target ~oncept.~

In Section 3.1, we show that an upper bound on
the number of bias strengthening queries is
O(F D * d), where F is the number of instance
features, D is the maximum number of hypothesis dis-
juncts, and d is the maximum depth of any value tree.
According to Section 3.2, an upper bound on the
number of bias weakening queries generated in
response to each wrong prediction on a new instance is
O(F * bd). where b is the maximum branching factor
of any value tree.

Suppose W wrong predictions arc made prior to
convergence? Then an upper bound on the number of
bias weakening queries generated to resolve W wrong
predictions is O(W * F * bd). Therefore, an upper
bound on the total number of bias strengthening and
weakening queries prior to convergence to the target
concept and its negation is O((F * D * d) + (W *
F * bd)).

The total numbex of PREDICTOR'S queries also
includes random instance and counterexample queries.
However, in this analysis we ignore the cost of these
two types of queries because at most four random
instance queries occur before the counterexample

ample quai- typically do not take long to find a
counterexample. Once a countacxample is found, the
bias weakening and then strengthening queries
reSUmC.

queries activate (see section 3.3). and the counterex-

61

IACL’s bias shifts are triggered by the order of
the training instances (see Gordon 1992). A serendipi-
tous order wil l enable the system to make the c m t
abstractions early. However, since this order is ran-
dom, it cannot be guaranteed to be helpful. Further-
more, as mentioned in Section 4.2, IACL’s bias shifts
occur when IACL decides this is the best way to
achieve its other goals. The main problem with this
approach is that it does not 0th much help to a system
that needs to recover from incorrect abstractions.
Often, what is really an abstraction problem is treated
as a generalization problem by the system. As a result,
incorrect abstractions often linger, thereby preventing
correct abstractions from being made. In the worst
case, this would cause the number of queries required
for convergence to the target concept and its negation
to equal the total number of instances, which is
o(bd ‘), where bd is the maxltllum number of leaf
nodes in any value tree.

Comparing the upper bounds for the two sys-
tems, we note that as F increases, IACL’s performance
should degrade much more rapidly than that of PRED-
ICTOR. Furthemore, the upper bound cost for IACL
depends on thc dam structures but not on the target
concept. On the other hand, W and D in the formula
for PREDICTOR’S upper bound cost depend, at least
inparkonthetargetconcept

D depends almost entirely on the target concept.
W, on the other hand, depends both on the target con-
cept and the bias appropriateness. If wc assume the
data structrpes and target concept arc fixed, and we
wish to analyze the eflkctiveness of bias shifting, then
we need to focus on the W component of the cost for-
mula. In particular, as W approaches zero.
PREDICTOR’S cost upper bound approaches a poly-
nomial. W tends toward zero as a greater proportion
of the biasing assumptions made by PREDICTOR am
c m t , e.g., most features arc irrelevant and therefore
the irrelevance assumption holds frequently. This is
precisely the situation in which empirical experiments
have shown PREDICTOR wtpuforms IACL.

Likewise, when most of the biasing assumptions
arc incorrect, W can becomc very large. In the worst
case, we would have the same situation as we have
with IACL, whae all instances would have to be sea
to leam the target collcep Again, empirical experi-
ments confirm this analysis.

Our analysis of IACL’s upper bound cost is
much like that of the other systems with which PRED-
ICTOR has been compared because these systems arc
also not designed for bias testing and shifting. Their

system policies favor other tasks.

4.4 Query Benefits
One of the goals of our method for bias testing

and shifting is to reduce the number of featUtes in the
hypothesis language. Relevant results from compura-
tional leaming theory can provide a rough estimate of
the benefits of srrengthening the bias in this way! The
sample complexity is the number of instances requind
to converge to the target concept. (Haussler 1988) has
shown that sample complexity relates directly to the
Vapnik-Chemonenkis (VC) dimension of a hypothesis
space, which is a measure of the expressiveness of the
hypothesis language. A less expressive language
implies a stronger bias and a lower VC-dimension.
Haussler measures convergence in the Probably
Approximately Correct (PAC) framework of leamabil-
ity, which assumes the e m r E > 0 and the confidence
(1 - 6) < 1. In this framework, ;t concept is expected to
be leamed approximately with high probability.

According to (Haussler 1988). given a fixed e
and 6 the minimum sample complexity is directly pro-
portional to the VC-dimemsion. Furthermore. if the
concept hypothesis is in A-DNF (which is true for
many concept leamers), then

VCdim (H) 5 4As log(4As G),
where H is the hypothesis space, n is the n u m b of
features in the instance language, s is a bound on the
number of terms (disjuncts), k 5 n, and s 5

We can now apply this theoretical estimate of
sample complexity to partiaUy explain the empirical
results summarized in Section 4.1. In our framework,
empirical perfomrance is measured in turns of &so-
lute convergence to the target concept, rather than
PAC convergence. Absolute convergence implies the
erro~ e is 0 and the confidence (1 - 6) is 1. In other
words, we require that the target concept be leamed
precisely. We also requh that the negation of the tar-
get concept be leamed precisely for absolute conver-
gence to hold. (Jlmc requhments arc meaningful for
applications where the cost of making an e m is
high.)

In our framework. the maximum number of
literals pa term, k, is equal to the number of (relevant)

. [;I

62

features in the hypothesis language. Also, we use a
different bound on s for our framework because when
there are irrelevant features, n no longer affects the
number of disjuncts. If we assume there is a maximum
of v values for any of the k relevant features, s 5 v f .
When PREDICTOR discovers irrelevant features and
strengthens the bias (by reducing k), Haussler’s ine-
quality (with the new upper bound on s) predicts that
the system will reduce the VC-dimension and thus
reduce the sample complexity. With the new bound on
s, Haussler’s inequality also predicts a reduction in
sample complexity when v is reduced by abstractions
that are made based on cohesion assumptions. Furth-
ennore, PREDICTORS ability to minimally weaken
the bias enables it to reruin a hypothesis space with a
low VC-dimension.

In summary, when bias strengthening is desir-
able, the cost of using queries to gather information
about the bias can be o f k t by the benefit of a reduc-
tion in the sample complexity gained by having a
stronger bias. In Section 4.3, we showed how in this
situation the costs are also reduced. So, when
appropriate, PREDICTOR’S method can yield lower
costs and increased benefits and a better performance
in comparison with IACL and other systems. When
inappropriate, the costs increase and the benefits are

- reduced and system performance degrades with
respect to the performance of IACL and other systems.

4 5 Illustrative Example
Let us examine a very simple illustration of how

the queries and bias shifts together can result in a syn-
ergy that reduces the convergence rate. We will focus
primarily on the value of the bias weakening queries
and minimal bias weakening. Assume we have two
concept learners, CL-Q and CL. l h e y di&r only in
that CL-Q uses the bias weakening queries and per-
forms minimal bias weakening, whereas CL does not
CL‘s method for bias weakening is to make the
hypothesis language equal to the instance language.
CL‘s motivation for bias weakening is the same as that
of CL-Q, namely, to resolve prediction emrs. Other
than the bias weakening queries of CL-Q, we assume
both systems request random instances from an oracle.

For simplicity, let us further suppose that both
systems are given a strong bias beforehand by the sys-
tem implementor and their only bias shifting task is to
weaken the bias if they discover (by a wrong predic-
tion) that the bias is incorrect. Also, for simplicity, we
assume neither system generalizes. They only learn
concepts using bias adjustments.

The data structures given to both systems are the
value trees of Figure 1, except that feature “size” is
now restricted to having the values “small” and
“large”. and the value “curved-solid” has no child
values. The target concept, as in Section 1, states that
small bricks are positive and instances of any other
description are negative. Finally, both systems begin
with a hypothesis language bias which states that
“shape” is the only relevant feature.

Both systems begin by requesting the same two
instances: a small aluminum brick, which is posi-
tive, and a large steel curved-solid, which is negative.
The current hypothesis now held by both systems is:

POS Hyp: (x I (shape(x,brick)))

NEG Hyp: (x I (shape(X,c~ed-solid))).

If the next instance requested by both systems is a
large bronze brick, and it is negative, both systems
will make a prediction emr , which uiggers bias weak-
ening.

CL-Q responds to the prediction error by using
its bias weakening queries. It requests one instance to
retest the abstraction to “any size“ - a small bronze
brick, which is positive. Since the class is different
than that of the large bronze brick, CL-Q decides the
absaaction to “any size” is faulty and removes it.
CL-Q then requests a large aluminum brick, a large
copper brick, a large brass brick, and a large steel
brick to retest the abstraction to “any.material”.
Since these instances have the same class as the large
bronze brick, this absaaction is considered permissi-
ble. CL-Q now minimally weakens the bias to obtain
the hypotheses:

FOSHYP. (X I
(siZe(xsmaU) & shaHx,brick)))

NEGHYF? (X I
((size(xJarge) & shape(x,brick))

(sii~(x,large) & shape(x,cuwe!d-solid)))) .
V

The system now needs om more instance. a small
curved-solid of any material, to converge on the tar-
get concept and its negation preckly. The odds are
high that a random choice will request this instance
before all instances have been seen. (Note that if the
bias strengthening queries wen used, this would be
the next instance requested.)

6 3

Aftet making a prediction error on the large
bronze brick. CL behaves difkrently. It does not
make the extra five queries that CL-Q made. Neither
does it have the extra information CL-Q obtained.
Rather than minimally weakening the bias, CL weak-
ens the bias to the instance language. CL. therefore,
requires all remaining 27 instances to precisely learn
the target concept and its negation. In this case, it is
clear that the infoimation gained by CL-Q from the
queries have o f k t their cost

5 Related work
Our approach is related to theoretical m h

on irrelevance (e.g.. Subramanian 1989) and relevance
(Grosof & Russell 1989). Subramanian’s definition of
irrelevance is similar to om. However, her definition
is tailored for reformulating a mblem solver’s
language to increase the problem dver’s ekiency.
Our definition, on the other hand, is tailored for incre-
mental concept leaming. Grosof and Russell have
created a theory of shifting bias as nonmonotonk rea-
soning. They use the notion of relevance to motivate
bias shifts. Prior to learning, biases are ordered from
stronger (i.e.. having fewer relevant components) to
weaker (i.e., having more relevant components).
Learning begins with a strong bias and shifts to
weaker biases as needed. Unlike the bias shifts
described hae, Grosof and Russell’s bias shifts are not
motivated by an analysis of biasing errors and there-
fore they arc unable to guarantee that the biascan be
minimally weakened.

Our approach is also related to approaches that
form abstractions based on equivalence classes. If
cohesion holds for a value a of feature f. then a forms
an equivalence class in terms of the target concept
membership of insrances having this value of feamf.
KoWs COPER is an example of another system that
uses equivalence classes for concept learning (Kokar
1990). corn uses the concept of invariance and an
expectation of equivalence classes to indicate when
constructive induction is needed Constructive induc-
tion is the dynamic generation of new features.
PREDICTOR could use a similar approach to
COPER’s to decide when to invent new abstractions.
For example, if cohesion does not hold for some
abstraction a in a value me, this could be considered
an indication of the need to split a into two separate
abstractions for which cohesion does hold.

The use of active learning in our approach is
related to literature! on queries for concept learning,
both theoretical (e.g., Angluin 1988) and experimental

(e.g.. Sammut & Baneji 1986, Muggleton 1987). Our
approach is most similar to that of the few systems that
query an oracle Md shift the bias. Notable examples
include the MARVIN system of Sammut & Banerji
(1986). Gross’s CAT (Gross 1991). Muggleton’s Duce
(1987). and the CLINT system described in De Raedt
& Bruynooghe (1990). MARVIN shifts the bias by
learning the definitions of new user-selected terms and
then uses these new tenns for further learning. This
system also queries an oracle 10 test generalizations
within the term definitions. These queries involve a
form of -tion similar to that used here.
Nevertheless, MARVIN’S queries are not for the pur-
pose of deciding how to shift the bias.

CAT, Duces and CLINT are all systems that
query an oracle to make bias shifting decisions. Of aU
these approaches. our approach is most similar to that
of CLINT, which uses irrelevance queries for bias
strengthening. Nevertheless. the lauer system does not
use irrelevance queaies to select a weakex bias. Furth-
ermore, our approach is unlike that of CLINT and all
other systems because our choice of a weakex bias is
detamined by bias tests that diagnose errors in such a
way as to guarantee that the bias can be minimally
W e a l e n d .

6 Summary
This paper pesena a unique approach to bias

shifting. Rather than performing unjustified bias
shifts, as most concept learning systems do, we first
test assumptions about the relationship between the
bias and the concept being learned. We also re-test
these assumptjolls in light of new, possibly contradic-
tay evidence, i.e., a prediction error. These tests are
peafonned with queries to an oracle. By using this
approach. a system can both strengthen and minimally
weaken the bias.

In addition to presenting our method for bias
testing, this paper also summarizes empirical results.
The empirical results are then explained by a
costbenefit analysis. Both the empirical and analyti-
cal results indicate that when bias strengthening is
desirable, the quay costs lirt lower and the benefits of
a stronger bias, namely, a reduced sample complexity,
are i n c d Likewise. when bias strengthening is
not appmprbte, the quay costs axe increased and the
benefits are reduced. The low costs and increased
benefits have produced a large performance gain over
other systems when bias strengthening is appropriate.
and the high costs and decreased benefits have pro-
duced a performance loss with respect to other systems

6 4

when bias strengthening is inappropriate.

Acknowledgements
I thank Bill Spears for his constant help,

encouragement, and insightful suggestions throughout
this entire project. Also, thanks to Jaime Carbonell.
Don Perlis, and Chinoo Srinivasan for their guidance,
and to Alan Schultz for his helpful comments on pre-
vious drafts.

References
Angluin, D. (1988). Queries and concept learning.

M a c h Learning, 2,319-342.
De Raedt, L. & Bruynooghe, M. (1990). Indirect

relevance and bias in inductive concept leam-
ing. Knowledge Acquisitwn, 2,365-390.

Gordon, D. (1990). Active bias selection for incre-
mental, supervised concept learning. Ph.D.
thesis, University of Maryland, College parlr.
Also (Technical Report UMIACS-TR-90-60
CS-TR-2464) University of Maryland,
Department of Computer Science.

Godon, D. (1992). Actively testing and minimally
weakening tk inductive bias. (NCARAI
Technical Report AIC-91-011). Also, submit-
ted to Machine Learning.

Grosof, B. & Russell, S. (1989). Sh$t of bias as non-
monotonic reasoning. (Technical Report
14620) IBM, Yorlnown Heights.

Gross, K. (1991). Concept acquisition through attri-
bute evolution and experiment seleciwn.
W.D. thesis, Camegie-Mellon University,
Pittsburgh.

Haussler, D. (1988). Quantifying inductive bias AI
learning algorithms and Valiant’s learning
framework. Artijkial Intelligence, 36, 177-
221.

Iba, G. (19T9). Learning &jutactive concepts fiom
aanpks. (A.I. Lab Memo 548). Mas-
sachusetts Institute of Technology.

Kokar. M. (1990). Semantic equivalence in concept
discovery. In D. Benjamin (Ed.), Change of
Representation and Inductive Bias. Boston:
Kluwer.

Michalski, R., Mozetic, I., Hong, J. & Lam, N.
(1986). The AQZ5 inductive learning system:
An overview and experiments. (Technical
Report UIUCDCS-R-86-1260). University of

Illinois, Department of Computer Science.
Mitchell. T. (1980). The need for biases in learning

generalizations. (Technical Report TR
CBM-TR-117). Rutgers University, Depart-
ment of Computer Science.

Muggleton, S. (1987). Duce, an oracle based approach
to constructive induction. In Proceedings of
the Tenth International Conference on
Artijcid Intelligence. Milan, Italy: Morgan
Kaufmann.

Pprter, B. & Kibler. D. (1986). Experimental goal
re-ion: A method for learning problem-
solving heuristics. Machine Learning, 1,
249-286.

Provost, E & Buchanan, B. (1992). Inductive policy.
In Proceedings of tk Tenth National Confer-
ence on Artijkial Intelligence. San Jose: Mor-
gan Kaufmann.

Quinlan, J. (1986). Induction of decision tnes.

Rendell, L. (1990). Feature construction for concept
learning. In D. Benjamin (Ed.) Chunge of
Representation and Inductive Bias. Boston:
Kluwa:

Sammut, C. & Baneji. R. (1986). Learning concepts
by =Ling questim. In R. Michalski, J. Car-
bonell, & T. Mitchell (Eds.), Machine learn-
ing: An artificial intelligence approach (Vol.
2). Los Altos, CA: Morgan Kaufmann.

Spears, W. & Gordon, D. (1991). Adaptive strategy
selection for concept learning. Proceedings
of the First International Workshop on Mul-
tistrategy Learning. Harpers Feny: George
Mason University.

latwns. Ph.D. thesis, Stanford University,
Stanford.

Utgoff, P. (1986). Shift of bias for inductive concept
learning. In R. Michalski, J. Carbonell, & T.
Mitchell (Eds.), Machine learning: An
artijkial intelligence approach (Vol. 2). Los
Altos: Morgan Kaufmann.

M a c k Lcwning, I , 81-106.

Submanian, D. (1989). A theory ~f@ti&d r e f o m -

65

5 7 -6-3 Grosof

Reformulating Non-Monotonic Theories
For Inference and Updating

Benjamin N. Grosof
T. J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598
(914) 784-7100 ; Internet: grosof8watson.ibm.com

IBM

Abstract

We aim to help build programs that do large-scale,
expressive non-monotonic reasoning (NMR): es
pecially, “learning agenfs” that store, and revise,
a body of conclusions while continually acquiring
new, possibly defeasible, premise beliefs. Cur-
rently available procedures for forward inference
and belief revision are ezhausfiue, and thus im-
practical: they compute the entire non-monotonic
theory, then re-compute from scratch upon updat-
ing with new axioms. These methods are thus
badly intractable. In moet theories of interest,
even backward reasoning is combinatoric (at least
NP-hard). Here, we give theoretical results for
prioritized circumscription that show how to refor-
mulate default theories so as to make forward in-
ference be selective, as well as concurrent; and to
restrict belief revision to a pari of the theory. We
elaborate a detailed divide-and-conquer strategy.
We develop concepts of structure in NM theories,
by showing how to reformulate them in a partic-
ular fashion: to be conjunctively decomposed into
a collection of smaller “part” theories. We iden-
tify two well-behaved special cases that are easily
recognized in terms of syntactic properties: dis-
joint appearances of predicates, and disjoint a p
pearances of individuals (terms). As part of this,
we also definitionally reformulate the global ax-
ioms, one by one, in addition to applying decom-
position. We identify a broad clam of prioritized
default theories, generalizing default inheritance,
for which our results especially bear fruit. For this
asocially monadic clam, decompoeition permits
reasoning to be localized to individuals (ground
terms), and reduced to propositional. Our refor-
mulation methods are implementable in polyno-
mial time, and apply to several other NM for-
malisms beyond circumscription.

Introduction
Large-Scale, Expressively Rich, Learning

Agents: We aim in this work’ to help build agents
that do large scale, expressive non-monotonic reason-
ing (NMR). We are intereated especially in what we
call learning agents: automatic programs that store,
and revise, a body of conclusions while continually ac-
quiring new, possibly defeasible, premise beliefs.
In many applications, information about which de-

faults take precedence over others (have greater pri-
oritization) is important and available. Many ap-
plications need the ability to express fairly arbitrary
first-order forma of default beliefs (e.g., induction, law,
natural language, communication), as well as fairly ar-
bitrary (finite) partial orders of precedence (e.g., speci-
ficity, reliability and authorit are not “layered” (a.k.a.
“stratified”))). [Grosof, 1991 r defines and discusses the
importance of non-layered priority. Non-layered pri-
ority is needed, for example, to adequately represent
defaulf inheritance.
In these applications, we regard as desirable for

many reasons, especially validation (both intuitive and
rigorous), that a NM formalism be “expressively rich”
not only in the above senses, but also that it be
equipped with a relatively strong model-theoretic se-
mantica (e.g., cf. Default Lo ic [b i t e r , 19801, circum-
scription [McCarthy, 19861 klifschitz, 19841, and Au-
toepistemic Logic [Moore, 19851). In this connection,
we also are interested in skeptical or cautious, rather
than credulous or brave, entailment.

Current Incapabilities: Currently, expressively
rich NMR3 has found virtually no application on a
large scale (more than order of ten defaults), except €or
the rather special cases of Prolog-style logic programs
and simple inheritance cf. AI frame-based systems.

Part of the problem is that there do not yet ex-

‘part of forthcoming PhD dissertation [Grosof, 1992bI
‘Note, however, that most of the discussion and results,

e.g., about disjoint describability and definitional reformu-
lation and d a l l y monadic theories, in this paper also
apply to the basic case where there are only two ‘priority
levels”: for-sure and defeasible.

‘In [Groeof, 1992b], we make this more precise; here, let
us j u t consider circumscription, Default Logic, and Au-
toepistemic Logic.

66

ist practical inference mechanism to support storing
and revising a limited body of conclusions as a work-
ing theory. Currently, for expressively rich NMR 4,
the only procedures for forwards inference are ezhaus-
tive: they compute the entire non-monotonic theory
(or, even worse, all credulous extensions). Also, cur-
rently, there are no procedures for performing belief
revision on a body of conclusions, upon receiving new,
asserted axioms (an update), beyond the exhaustive
method of re-computing everything from scratch. (By
“axiom”, we mean a premise belief.) * By belief re-
vision, we mean modifying the stored conclusions to
retract those that are no longer entailed by the newly
augmented axiom set.? By updating, we mean belief
revision plus possibly the inference and storing of some
additional conclusions.
Strategy and Summary: In this work, we attack

these problems at the level of logical understanding
(rather than, say, domain-dependent control of reason-
ing). Our analytic perspective is that a prime underly-
ing difficulty in the tasks of inference and updating, as
well as in specification, is the logical globality of NMR:
in general, conclusions depend on the whole of the ax-
iom set. The exhaustiveness of current methods is, in
effect, a manifestation of their caution in dealing with
(conflicting) interaction.

We define the concept of a prioritized database, uk
ing circumscription, as the logical representation of a
learning agent that performs sound, but incomplete,
expressively rich NMR. By database, we mean a s u b
set of a (NM) theory. Prioritized circumscription meets
our prime expreaeive concerns, offers mathematical
convenience, and has inference procedures currently
available.

We elaborate a detailed “divide and conquer” strat-
egy. We develop concepts of, and results about, struc-
t u n in prioritized circumscriptive theories, by show-
ing how to reformulate them in a particular fashion:
to be conjuncfiuely “decomposed” hierarchically into a
collection of smaller “part” theories, i.e., sub-theories
which we call slices. W e show that it is poseible, and
useful, to slice within slices. In this way, we map
groups of axioms to groups of conclusions. We use
the decompositions to analyze the interaction between
defaults / parts in a NM theory. Much technical diffi-
culty and trickiness a r k from the expressive need to
consider non-layered prioritization.

We give theorem that localize entailment and thus
show how to make forward inference be selective, aa

‘including even the propositional special case and the
special case of stratified logic pro rams with negation [Lif-
schitz, 19871 [Przymusinski, 1988f

’bottom-up. By “backward”, we mean totally goal-
directed d query-answering.

‘NM formalismr, e.g., JTMS’s [Doyle, 19791, having
such procedures lack our desired expressive properties.

‘For simplicity, we assume that these are the only ones
removed from storage.

well as concurrent. Exhaustive inference on a slice
generates only a part of the global theory. Inferences
within each slice (sub-theory) can be performed in par-
allel with inference within every other slice. All non-
monotonic inference can be localized to the slices; only
monotonic inference is required between the slices. We
give theorems that localize retraction and thus show
how to make belief revision be partial in the sense that,
for a given update, the arena of potential retraction is
known to be restricted to a particular part of the pre-
vious database.

Our results enable the exploitation of other results
on inference and belief revision that are limited to ex-
pressive special cases, say to do exhaustive forward
inference in polynomial time (e.g., the “sympathetic-
solitary” case in [Grosof, 1992b] that generalizes pred-
icate completion [Clark, 19781 and the Closed World
Assumption). These special case results can be a p
plied to one, or several, slices, even when they do not
apply to the global theory.

Our results are about well-behaved special cases that
are easily recognized in terms of syntactic properties.
The first “cleanly slice-able ” property is disjointness of
mentioned predicatea. We show that if the for-sure and
default axioms can be partitioned into groups which
are disjoint in terms of the predicate symbols they men-
tion, then non-monotonic inference based on each par-
tition can proceed without considering the axioms in
the other partitions: t h e other axioms are irrelevant
in an important sense, as far as that partition is con-
cerned. We show this implies that updating with new
for-sure and default axiom that span only some of the
previous partitions does not require retracting previous
conclusions based purely on the remaining partitions:
they are safe.

Most large practical applications, however, do not
display such perfect partitionability of mentioned pred-
icates. The real power from our result about disjoint-
ne98 of predicates comes when it is combined with an-
other kind ot reformulation: of the axioms in a given
global axiom set, not just of the global axiom set into
decomposed constituent axiom sets. We define a con-
cept of disjoint describability: syntactic partitionabil-
ity afler definitional reformulation of the axioms. As
part of this, we give a logical definition of a particular
kind of definitional (i-e., equivalencepreserving) refor-
mulation with respect to a background theory, modi-
fying the standard logical idea of a conservative exten-
sion. We also discuss, and use, another kind of refor-
mulation: to break up open defaults (Le., schema-type,
as opposed to closed, i.e., propositional) into cases.
An important difference from definitionally reformu-
lating monotonic theories is that two default axioms
01 and 0 2 cannot, in general, be equivalently replaced
by the default axiom corresponding to the conjunction
01 A 0 2 the way that two for-sure axioms can always
be equivalently replaced by their conjunction B1 A B2.
This is why we need to consider reformulation of the

67

axioms one-by-one.
Using these definitional and default-cases reformu-

lations, we arrive at our second cleanly slice-able, yet
syntactically recognizable, property: disjointness of
mentioned individuals. We show that a fairly broad
class (%socially monadic”) of prioritized default cir-
cumscriptions is cleanly slice-able into one slice the-
ory per named individual (ground term in the lan-
guage) plus a remainder-case slice. Each of these
individual-wise slices is propositional, and is, essen-
tially, much simpler than the global, in several ways:
number of axiom instances (especially, potential primi-
tive default conclusions), availability of inference meth-
ods, and availability of known computational complex-
ity results. (Unfortunately, we do not have space to
discuss NM inference methods and complexity results
in detail. But see the final section.) The asocially
monadic class includes, as a special case, default
inheritance networks of the kind studied by [Touret-
zky, 19861 and used in many AI frame-based systems.
The asocially monadic class is more general, however:
it permits more than one antecedent in default rules,
free use of negation, and freer use of disjunction.

While definitional reformulation is hard in general,
we have a polynomial-time algorithm (omitted in
this draft to save space and preserve focus) to pe-
form the recognition and exploitation of this asocial-
monadic reformulation and decomposition. More pre-
cisely, the algorithm is O(n3), where n is the size of the
(global) axiom set (which is, moreover, typically much
smaller than the whole theory, of course).

We show that our conjunctive decomposition results
imply safeties in belief revision. We illustrate the prob-
lems of scale in learning agents with an extended exam-
ple of a prioritized database and show that our safety
theorems capture much of the preponderant stability
(i.e., most beliefs are preserved after each update) that
this database displays through its sequence of updates.
We show, using the example, that decompositions on
these two bases combine synergistically, as well as hi-
erarchically: it is useful to slice within slices.

Finally, we observe that our formal reformulation
methods are implementable at reasonable cost, and
apply to several other NM formalisms. We have
polynomial-time algorithms (again, omitted here
due to space and focw) for disjoint predicates, as well
as for asocially monadic, also in O(n3), where n is the
size of the (global) axiom set.

A Motivating Example
Next, we give an extended example of a learning agent,
in the domain of common-sense default reasoning, that
illustrates issues of selective forward inference and par-
tial belief revision on a large scale. We present it first
at an intuitive level, and formalize it later.

We adopt the following notation. A 0> prefix indi-
cates that the sentence that follows is a base axiom, Le.,
has for-sure (non-defeasible) belief status. A :> pre-

fix indicates that the formula that follows is a default
axiom (roughly, a normal default without pre-requisite
in Default Logic). Its label, e.g. (dl), serves as a tag
for defining prioritization-type precedence between de-
faults via’P’REFE’R (prioritization) axioms. These de-
fine a strict partial order of precedence, via transitive
closure. P‘R€F€R(dl, d2), for example, means that
the default axiom with label (dl) has strictly greater
precedence (priority) than the default axiom with label

We make the Uniqueness of Names Assumption
(consider it included as a for-sure axiom). As a short-
hand for conjunctions of for-sure assertions of posi-
tive or negative literals, we list the satisfying objects,
or, more generally, tuples. Often, in this context, we
use “. . ,” to indicate that there are additional satisfy-
ing tuples not shown explicitly; for simplicity’s sake,
we assume these objects are distinct from all other
explicitly-shown objects.

In this example, the agent starts with no beliefs, then
accumulates axioms by receiving updates. After each
update, the agent draws a bunch of conclusions (say,
ground firsborder sentences), both monotonically and
non-monotonically, and retracts some of its previous
conclusions. Each Ui indicates an update, consisting
of one or more axioms. Axioms are numbered. In
addition, we show explicitly with and a few of
the more interesting NM conclusions and retractions,
respectively, about which discussion will revolve. Note
that, by Kconclusion”, we always mean in the skeptical
sense.

The first update consists of a default axiom, that
bats have two legs, together with some for-sure ax-
ioms. Non-monotonic (default) conclusions include
that known bats are twelegged. The second update
consists of another, default axiom, that mammals have
four : q s , together with the precedence axiom, that this
new ‘>fault has lower priority than the previous, more
speci:ic one. The third update consists of two default
axioms about emergency disaster situations, plus some
associated for-sure information. Intuitively, since the
axioms in this new update are about a totally differ-
ent topic than the previous axioms, they should not
result in having to retract any of the previous conclu-
sions. Moreover, intuitively, the agent should be able
to draw the conclusions from these new axioms without
even having to consider the previous ones in detail.

The fourth update consists of some for-sure informa-
tion about two named individuals, Joe and Spot, that
violates some previous default conclusions. Intuitively,
since there is no information that “connects” any other
named individuals to Joe and Spot, these new axioms
should not result in having to retract any of the pre-
vious conclusions that are not about those named in-
dividuals: e.g., that are about some other named indi-
viduals. For example, the previous default conclusion
2legs(Betsy) should not have to be retracted.

Later, we will show how to capture these intuitions

(a.

68

I
EXAMPLE’S AXIOMS AND SAMPLE CONCLUSIONS

2.41 :
[I]
[2]
[3] 0> +bat : B e t s y , Joe , J u n e , Jackie , . . .
[4] 0> +dog : Fido, Spot, Siccem, Jumper , . . .
[5]
[6]
&;Ui
Uz :
[7]
[8] P R & 3 & R (d l , d2)
&iUi
UJ :
[9]
[lo]
[111
[12]
[13]
[14]
&;U;
Uq :
[15]

Us :
[16]
[17]
[18] P R & 3 & R (d 7 , d6)
[19]
Us :
[20] 0> +weekday : Today, 11/12/91,. . .
[21] 0> +reg-ernpZoy : (Ed, B l d g A) , . . .
&;Ui b i a t t end-work (Ed , T o d a y)
U7 :
[23] 0> +Tuesday : Today , 11/12/91,. . .
[24] 0> +in-group(p, 4321) : E d , Peg , Maggie, . . .
[25]
[26] 0> ~vaccrt ion(Boss(4321) , d) : Today, . . .
[27]
Us :
[28]
[29]
[30] P R & F & R (d l O , d9)
[31]
&iUi iat tend-work(E d , Today) ; attend-work(E d , T o d a y)

Mammals Taxonomy plus: Bats are Two-Legged
e> VX. bat(x) 3 m a m m a Z (z)
0> Vx. d o g (z) 3 m a m m a l (z)

0> Vx. 1 (2 l e g s (z) A 4 / e g s (z))
(d l) :> bat(z) 3 2Zegs(x)

2 l egs (Be t sy) A 2Zegs(J o e) A . . .
Lower-Priority Default about Legged-ness

(d 2) :> m a m m a l (z) 3 4 legs (s)

4legs(F ido) A 4Zegs(Spot) A . . .
Emergencies (cf. [Grosof, 19911)

(d 3) :> f ire(pZace,day) A person(z) 3 Zeave(z,pZace,day)
(d4) :> earthquake(pZace, day) A person(z) 3 Zeave(z,place,day)
0> +person : S u e , A n d y , E d , Peg , Maggie, Ei leen, C h a n g , . . .
0> + f i r e : (Ba l t imore , 2 / 4 / 0 3) , (W a t t s , 8 / 2 / 6 7) , . . .
0> +earthquake : (SF, 4 / 8 / 0 6) , (M e x i c o C i t y , 5 /3 /87) , . . .
0> Vx, place, day. Zeave(z, place, day) 3 wttend-work(x,pZace, d a y)

b Zeave(Sue,SF,4/8/06) A Zeczve(Andy, W a t t s , 8 / 2 / 6 7) A . . .
Legged-ness: Selective Defeat For Individuals

0> -2legs(Joe) A 14 /egs (Joe) A -2legs(Spot) A -4legs(Spot)
& jUi 2legs(Joe) ; P 4legs(Spot)

Work Attendance (cf. [Grosof, 19911)
(d6) :> weekday(d) A reg,empZoy(person,pZace) 3 at tend-w~k(person,place, d)
(d 7) :> fZu(person, d a y) 2 -attend-work(person, place, d a y)

P R & 3 & R (d 3 , d7) & P R & F & R (d 4 , d7) & P R & F & R (d 5 , d7)
Ed is Ill; Conflict Resolved by Prioritization (cf. [Grosof, 19911)

[22] .> +flu: (E d , T o d a y) , ...
Miscellany: Meetings and Attendance (cf. [Grosof, 19911)

0> Vperson. in-group(person, 4321) 3 reg,empZoy(person, BZdgA)

0> Vp, d. group-meeting(p, d) A in-group(p, 4321) 3 attend-work(p, BZdgA, d)

(d 9) :> in-group(p, 4321) A T u e s d a y (d) 3 group-rneeting(p, BZdgA, d)
(d10) :> in-group(p, 4321) A vacation(Boss(4321), d) 3 -group-meeting(p, BZdgA, d)

P R E F & R (d 3 , d10) & P R & F & R (d 4 , d10) & P R & F & R (d 5 , d10)

Group Meetings; Non-Layered Conflict (cf. [Grosof, 19911)

69

as formal guarantees.

Formal Definitions: Prioritized
Circumscription

We define our notation for axioms from section 2 as a
meta-language (the Circumscriptive Language of De-
faults, or CLD for short) that, a t any point in the
update sequence, specifies a prioritized “default cir-
cumscription of the form:

dtf
3 PDC(B; D; R; f i z W ; 2)

B[Z] A -32‘. B[Z‘] A Z ~ (D ; R) Z ’ A w = W‘
Here, B is the conjunction of the sentence parts of all
of the for-sure axioms. D is the tuple of the default
axioms’ formula parts. R is a strict partial order of
precedence (priority). It is the transitive closure of
the precedence relation specified by the pairwise com-
parisons in the PR&3&R axioms. Its domain, accord-
ingly, is the set of default axiom labels. Z is the tuple of
all mentioned predicate symbols; e.g., in the example,
(bat, dog, mammal, 21egs,41egs, f i r e , . . .). W C 2 is
the tuple of Predicates that are jized. Fixing is a stan-
dard notion in the circumscription and non-monotonic
reasoning literature. Fixing is part of the specifics
tion of non-monotonic reasoning. Intuitively, fixing
some symbols implies that any formula that mentions
only those symbols is immune to the circumscription
operation in the sense that it can be concluded non-
monotonically, i.e., from the circumscription, only if it
can be concluded “monotonically”, Le., from the for-
sure axioms B alone. For simplicity, we also fiz (do
not vary and second-order quantify over) all function
symbols. This assumption can easily be relaxed. This
assumption is typical in the circumscription literature.
Uniqueness of Names, plus Domain Closure, implies
that functions are effectively fixed, for example. For
the sake of simplicity, in this paper, we for the most
part do not consider fixing of predicates, only of func-
tions: W is empty. We omit further details about fix-
ing to save space and to preserve focus; see [Grosof,
1992b] for more.

Prioritized default circumscription is a slight gen-
eralization of prioritized predicate circumscription cf.
[Grosof, 19911. We employ it and CLD to clarify the
definitions of axiom sets and of updating, and the in-
tuitive relationship to other formalisms for default re%
soning. [Grosof, 1992b] shows as a theorem the equiv-
alence of any prioritized default circumscription to a
corresponding, abnormality-style, prioritized predicate
circumscri tion, generalizing a previous result that a p
peared in Lifschitz, 19841. Note that our definition can
express minimizing predicates aa a special case: e.g.,
:> abi(z), where abi is an abnormality predicate.

We let N stand for the index tuple of D: it is just
(isomorphic to) the tuple of the labels of the default
axioms. Le., in the example, after the second update,
the elements of D [A are:

Xz. bat(z) 3 Iegs2(z),

Xz. mammal(z) 3 4legs(z)
and N = (dl, d2). R(j , i) means that the default with
label j has strictly higher priority than the default
with label i. + (D ; R) is defined as the strict version
(S ~ D ; R) A -+(D;R)) of the prioritized “formula” pre-
or er S(D,R):

dlf
Z ~ (D ; R) ~ ’ =

V i E N . pj E N. R(j , i) 3

Here D j and Di refer to the j *” and i‘ members,
respectively, of the tuple D.’ We define the corre-
sponding circumscriptive prioritized default fheory as
the set of all conclusions entailed (model-theoretically,
in second-order lo ic) by the prioritized default cir-
cumscription. We define a prioritized database
PDB) to be a pair, consisting of a CLD axiom set A
% n the example, the current colit--ion of the updates
3i’s)); and an associated priort:-:ed database theory
3f3, which is some subset of the 1 :. .ritized default cir-
cumscriptive theory C(A) specifizli by A. Here, C is
the non-monotonic theory operator for the CLD for-
malism.

(Vz. Dj[Z, z] i Dj[Z’, z])]
3 (Vz. Di[Z, z] 3 DiLZ’, z])

Decomposition: Concepts
Aa part of our strategy, we need to develop a strong
idea of a part of a non-monotonic theory. This is im-
portant for several reasons: 1) to define safe versus
unsafe zones for belief revision; 2) to define relevant
versus irrelevant context for inference (and for specifi-
cation); and 3) to define the structure and organization
of an overall (“global”) prioritized database. In clas-
sical logic, we take for granted such an idea of a part
of theory. However, the dependence of entailment on,
in general, the entire global axiom set means that we
have to “work for it” in NM logical systems.

Our general concept of decomposition is applicable
to many NM logical systems. A global theory 7 can
be obtained either directly by applying the NM the-
ory operator C to the global axiom set A, o r indirectly
(but equivalently) via decomposition. In decomposi-
tion, the global axiom set A is decomposed into an
associated set of “constituent” axiom sets (the SAi’s).
The global theory 7 is then equivalent to the combi-
nation of the corresponding sub-theories (the Slj’s),
where each sub-theory is the result of applying C to a
constituent axiomset: ST^ sf C(SAj).

‘For notational simplicity, we ignore the potentially dif-
ferent aritiea of the various open formulas Di.

‘See [Groeof, 1991) and [Groeof, 1992b] for more discus-
sion of how prioritized circumscriptions are defined. Note
that the prioritization p.0. R is not necessarily layered
stratified) (indeed, in our example, it is not) as it was in

ikhitz, 19851.
“In section 5, we generalize the definition above to in-

clude the explicit “fixing” of a set of formulas, e.g., a subset
of the predicates. [Groclof, 1992b] gives details.

b

70

*T C
A

decomposition conjunctive
combination

ST1
C

constituent C
axiom sets SA2

STn
C SAn

f
global
axiom set

*T C
global A
axiom set

constituent

STn
C SAn

global
&wry

sub-
theories

NIU
theory
operator

Figure 1: Conjunctive Decomposition: a conceptual flow diagram. A global theory 7 can be obtained either directly
by applying the NM theory operator C to the global axiom set A, o r indirectly (but equivalently) via decomposition.
In decomposition, the global axiom set A is decomposed into an associated set of constituent axiom sets (the SAi'S).
The global theory 7 is then equivalent to the conjunctive combination of the corresponding sub-theories (the S7i's),
where each sub-theory is the result of applying C to a constituent axiom set: S7i sf C(SAi).

In CLD, we define 7 to be the result of conjunc-
tive combination when 7 is Cn(Ui=l,...,n S7i); where
Cn is the monofonic consequence (theory) operator in
classical logic. When the corresponding axiom sets are
understood, we will say that the global theory is con-
junctively decomposable into these slice sub-theories.
11

In terms of the circumscriptions, we have:

PDC(A) 3 A PDC(SAi)
i=l , ..., n

Again, when the corresponding axiom sets are un-
derstood, we will also speak of a circumscription be-
ing conjunctively decomposable into slice circumscrip-
tions, e.g., for n = 2:

P D C (B ; D ; R ; Z) --I . ,

PDC(SB1; SD1; SR1; 2) A
PDC(SB2; SD2; SR2; 2)

Figure 1 illustrates conjunctive decomposition with
a flow diagram.

Conjunctive decomposition is thus a kind of refor-
mulation o r representation change. The global axiom

"Serial combination has the flavor of a cascade: there
is a series of phases of adding axioms and drawing conclu-
sions, where the previous stage's conclusions are treated
as for-sure. Many NM inference procedures can be de-
scribed in this manner. Details about serial decomposition
are omitted due to considerations of space and focus. See
[Grosof, 1992b] for more.

set and theory (A ,T) are transformed into a collec-
tion of constituent axiom sets and slice sub-theories:
((SA1 1 S71) 9 e * 9 (SAn 9 $7,)) -

Most Subsets Do Not Qualify As Con-
stituents for Decomposition: Note that, in gen-
eral, in non-monotonic reasoning, one cannot blithely
partition a global axiom set into a bunch of (distinct,
or, more generally, overlapping) subsets (whose union
is the global axiom set) any old way and get a conjunc-
tive decomposition. This is because the axioms in one
subset may conflict with those in another.

E.g., consider the classic Quaker-Republican exam-
ple of conflict in default reasoning: there are two de-
fault axioms, one saying that Quakers are typically
Pacifists, and another saying that Republicans are typ-
ically non-Pacifists. In addition, there are two for-sure
axioms: that Nixon is a Quaker, and that he is a Re-
publican. Suppose we consider two subsets: one con-
taining the Quaker axioms, and another containing the
Republican axioms. Treating a subset as a constituent
axiom set means drawing non-monotonic conclusions
from it as if there were no other axioms around. Doing
so, from the first (with Quaker) one gets the default
conclusion that Nixon is a Pacifist; from the second,
one gets the default conclusion that Nixon is a non-
Pacifist. Taking the conjunction of these two "sub-
theories" thus results in garbage: inconsistency. Yet
the actual global theory is consistent: neither conclu-
sion about Pacifism is sanctioned. Figure 2 illustrates.

71

e> Repub l i can(Nizon)

:> Repub l i can(z) 3 - .Pacifist(z)

-Pacifist(N i z o n) Pacifist(N i z o n)

I

Figure 2: Non-modularity: Quakers and Republicans. (Default axiom labels not shown.)

Our per-
spective is that, in general, non-monotonicity means
a kind of logical non-modularity: when attempting
to draw conclusions from a subset of the global axiom
set, one must keep in mind the context of the remainder
of the global axiom set. If one considers that remain-
der as an “internal” update, then that update may be
non-monotonic. Another way to view this situation
is that non-monotonicity means logical globality: in
general, a non-monotonic conclusion cannot be drawn
until the entirety of the global axiom set is considered.

Locality:
Suppose we can find a conjunctive decomposition in
which for some i , the slice’s axiom set is a subset of the
global, i.e., SA6 A. In this case, we say that the slice
is a clean slice. Then we know that all the remaining
axioms (A-SAi) in the global axiom set are imleuanl
c o n f e d , in an important sense, relative to the slice’s
axiom set SAi. In this case, one can soundly, and in
an important sense completely, perform inference lo-
cally: considering only the axioms in SAi, and using
whatever standard procedures are available generally
for the NM formalism. This is sound, because C(SAi)
is then a subset of the global theory. This is c o n
plete, in a sense, because the contribution of SAi to
the global consequences requires only monotonic infer-

ence beyond its own local (NM) consequences C(SAi).
By “irrelevant” above, then, we mean that one does
not need to consider the remainder of the global ax-
ioms in order to do the essential non-monotonic aspect
of the reasoning from SAi.
In the rest of this paper, we will be only consider-

ing decompositions that are clean. ([Grosof, 1992b],
however, discusses the usefulness of decompositions
that are not clean, e.g., decompositions on the basis
of higher versus lower priority.)

Observe that in clean slicing, the constituent ax-
ioms seta are each smaller, and thus simpler, than the
global axiom set. In prioritized default circumscrip
tion, and in other expressively rich NM formalisms, the
computational complexity of non-monotonic reaming
(including, full forward inference and belief revision)
is worse than monotonic reasoning. Non-monotonic
reasoning (full forward inference and belief revision)
in each slice, and via monotonic conjunctive combi-
nation, is thus computationally less complex than
non-monotonic reasoning in the global theory.

Partitioning Axioms As Kind of Reformulation:
Our perspective, therefore, is that, in non-monotonic
reasoning, decomposing, e.g., partitioning (see Th-
rems 1 and 12), a global axiom set into constituent
axiom sets is a quite non-trivial kind of reformulation.
This is very different from the situation in classical

72

,
monotonic reasoning.
Safeties of Updating:
Suppose, in a conjunctive decomposition, that
(SA1 , . . . , SA,} are present both before and after an
update U. Le., suppose that some of the constituent
axiom sets in a decomposition after an update U are
unchanged from (Le., are the same as) in a decom-
positon before that update. Then we know that all of
the conclusions in the conjunctive combination of their
associated slices are safe under the update.

Hierarchy:
We can view the conjunctive combination of a set of
slice sub-theories as being, in turn, a sub-theory. When
those slices are clean, then this sub-theory is itself well-
defined as a clean slice: its axiom set is simply the
union of those slices’. Thus we can often choose grain
size hierarchically during conjunctive decomposition.

Sequencing of Inference: See section 1 about con-
currency.

I ,
I Disjoint Predicates

Our results will all make use of the following idea of
decomposing the specified prioritization.

Composing Prioritization:
The concept of prioritizgtion over groups of defaults is
natural in the specification process for many applica-
tions: often a group of defaults corresponds to a topic.
[Grosof, 19911 introduced, and [Grosof, 1992b] e labe
rates, this idea of “composing” prioritization, in which
an overall prioritization p.0. R over the domain of in-
dividual defaults is equivalent to the result of compo%
ing an external prioritization p.0. RE, defined over
groups, with a tuple RI of prioritization p.o.’s, one
(R l i) per group, that each represent the prioritization
internal to that group: R = RE*RI. Groups may,
in turn, be composed of groups. Thus we may define
prioritizations of prioritiaations, in hierarchical or re-
cursive fashion. Our example displays this structure.

Our first result is about decompoeition on the basis
of syntactic disjointness of predicates. It captures a
basic case of the intuition that syntactically “having
nothing to do with each other” should imply strong
irrelevance of the kind we discussed in the last section.
Theorem 1
(Clean Decomposition, given Disjoint Predi-
cates)
Let PDC(B;D;R;Z) be a global PDC.
Let (Bl [Zl , . . . , B k [Z k] } be a partition of the base
axioms B [4 , and let {Dl[Zl], . . ., Dk[Zk] } be a par-
tition of the default formulas D [q , where the predicate
tuples 21 , . . . , Zk are a (disjoint) partition of 2. Le.,
in terms of CLD, let there be a partition, of the base
and default axioms, where the predicates mentioned in
each element of the partition are disjoint. If a certain
condition (0) (see below) on the prioritization R is sat-
isfied, then

PDC(B; D; R; 2) f
PDC(Bj; Dj; R I j ; 2)

(Note that the Z on the right-hand side can be equiv-
alently replaced by Zj.) Condition (0) is defined as:
either, R is the composition of some prioritization RE
with the tuple RI of the internal prioritizations of each
partition; or, R is layered (stratified). The composition
condition for non-layered R corresponds, intuitively, to
a kind of a partitionability of the prioritization. Note
the special case of empty R satisfies (0).

Proof Overview: Surprisingly non-trivial. The
essence is to use the ability to separate existential
quantifiers in the right-hand-side part of the circum-
scription formula (cf. section 3). Non-layered prioriti-
zation makes this tricky: hence the prioritization con-
ditions in the theorem. 0

In terms of CLD, Theorem 1 tells us that syntac-
tic disjointness implies irrelevance in the sense that
we discussed in the last section; the decomposition by
syntactic partition is a clean slicing.

Theorem 1 immediately yields a powerful result
about inference.
Theorem 2
(Locality of Inference, given Disjoint Predi-
cates)
In Theorem 1, each slice j is sound and complete,
relative to the global theory, for inference over its
corresponding sub-language (partition of the predi-
cates). That sub-language consists of the formulas that
mention only the predicates Z j . This locality holds
both for forward inference, and for backward inference
(query-answering). Note that to perform inference us-
ing any subset Y of the predicates Z, one need only
work in the conjunctive combination of .those slices
whose predicates cover that subset Y.

Theorem 1 also immediately yields a powerful result
about belief revision.
Theorem 3
(Safety of Updating, given Disjoint Sub-
Languages)
In CLD, let the previous axiom set be partitionable
according to Theorem 1. Let an update U consist of
base, default, and prioritization axioms, such that the
formula parts of the base and default axioms mention
only predicates from a (possibly empty) subset of the
previous partitions, and such that the global prioritiza-
tion condition (0) is still met. Then all of the previous
conclusions derived solely from the rest of the parti-
tions’ slices do not require retraction.

Application to Main Example:
The above theorems capture the first intuition that we
discussed in section 2. At each point in the sequence of
updates, Theorem 2 implies that inference can be l e
calized: inferences about legged-ness can be performed
in the slice that contains only the axioms about legged-
ness, and likewise for meetings. Figure 3 illustrates the

7 3

original representation
global

conjunctive decomposition disjoint predicates I
I legged-ness I meetings

Figure 3: Conjunctive Decomposition using Disjoint Predicates: In 01” main motivating example (section 2), we
conjunctively decompose the global axiom set (after the last update i, 1 into two slices by employing the disjoint
predicates result (Theorem 1): one slice about legged-ness, and the 0th-r slice about meetings. In the bottom half,
each inner box stands for a constituent axiom set.

conjunctive decomposition cf. Theorem 1 after the last
update. Theorem 3 guarantees that after each meet-
ings update, all of the previous conclusions drawn from
the legged-nesa slice are safe, and vice versa.
Generalizations:
Theorems 1, 2, and 3 generalize in several directions.
Firstly, predicate (and function) symbols may overlap
between the constituent axiom seta as long as they
are fixed in the circumscription (see earlier discussion
about fixing in section 3). Intuitively, it is OK to spec-
ify some predicate (and function) symbols as k e d if
it is OK not to infer any default conclusions express
ible purely in terms of those symbols. Secondly, the
prioritization condition can be relaxed somewhat.

Definitional Reformulation of Axioms:
Thirdly, and must :nterestingly (see discussion toward
end of section 1 about source of power), one can de-
compose with irrelevance (slice cleanly) as long as one
can definitionally reformulate the global axiom set to
meet the partitionability condition. (See Theorem 12.)
One interesting such case ia reasoning about one indi-
vidual object, e.g., Joe in our example, at a time. (See
Theorem 16.) Often (e&, for the legged-ness axioms
in our example), such re-formulability is easily (time
polynomial in the number of axioms) detectable syn-
tactically. We pursue all this in the next two sections.

Basic Definitional Reformulation of
Axioms, One-by-One

Next, we define a particular kind of definitional refor-
mulation. This kind of reformulation maps each for-
mula in one formulation into a correspondent formula
in another formulation, while preserving equivalence,
i.e., without l o a of information. Our motivation for

considering this limited kind of reformulation is our
intended application: to disjoint describability and its
asocial-monadic special case. Why do we do the r e
formulation “one axiom at a time”, i.e., one-by-one?
Much of the reason is that there is an important dif-
ference between default / NM reasoning and monotonic
reasoning.

We take for granted in monotonic logics that a col-
lection of for-sure (base) axioms B1, . . . , Brn can be
equivalently replaced by the axiom B1 A . . . A Bm.
In prioritized default circumscription and most other
expressively rich NM formalisms, however, one can-
not, in general, equivalently replace the pair of defar.1:
axioms (whose default formulas are) D1 and D:
the default axiom (whose default formula is the
junct,on) D1 A 0 2 (even in the case without priori- -
Le., when the prioritization is empty). Informaticnai
“gain size” of the defaults is important: having the
two separate defaults means that, for example, 0 2
may “succeed” (i.e. , be concluded non-monotonically
from the defaults) even if 01 is “defeated” (e.g., is vi-
olated by the for-sure information), unlike if the only
default present is D1 A 0 2 . We will need equivalence-
preserving (and information-preserving) reformulation
in order to apply the decomposition on the reformu-
lated representation back onto the original representa-
tion.

Circumscription is defined in terms of second-order
logic. We thus find it convenient and natural to define
the kind of definitional reformulation we will need in
terms of second-order logic, as well. We build on :* a

standard idea of a conservative extension, drawn f: ;~
the classical logical literature. In this and the next -
tion, we then develop several, increasingly complex
tions of definitional reformulations, in order to har.clle

7 4

the grouping structure in various stages of our refor-
mulations: groups of predicates, groups of individuals,
groups of formulas.

In this paper, we mainly address reformulations ori-
ented around disjointness of mentioned (predicate and
function) symbols. It is thus convenient to define our
changes of representation in terms of changes in the
symbols mentioned.

First Cut at Definitional Reformulation:
What does it mean to definitionally reformulate the-
ories (or formulas) while preserving equivalence? At
first glance, it simply means to introduce some defini-
tions (of new symbols) which logically imply (entail)
the equivalence of a theory expressed in an original set

theory expressed in those new symbols (i.e., a new r e p
resentation). E.g., let A l [P] be the original theory, let
U[P, Q] be some definitions of new symbols Q in terms
of the old symbols P , e.g., a conjunction of explicit
definitions:

, of symbols (i.e., an original representation) to a new

U[P,Q] Zf
(Q1 E l [P]) A . . . A (Qm Em[P])

(where m is the length of the tuple Q) , and let A2[Q] be
a new theory that is equivalent to A l [P] given U[P, Q]:

More generally, we .can permit the new representa-
tion to use some of the old symbols; let W be the
overlap symbols between the old and the new. S u p
pose AI[&’, Y] is the original theory, A2[W, Y , Z] is the
new theory, and U[W, Y , z] is the (conjunction of) def-
initions of new symbols 2 in terms of W and Y , e.g.,

W, Ql I= A W I = A2[Ql

dzf U[W,Y ,Z] =
(21 = E l [W , Y]) A . . . A (Z m

V[W, Y , Z] + Al[W, Y] G A2[W, Z]

Em[W,Y])
(where m is .the length of the tuple 2); and suppose

Then we call U a “putative” definitional reformulator.

Observation 4
(Subtlety: Uninformativeness and Consistency)
However, there is a subtlety. To us, part of the intu-
ition behind the idea of an definitional reformulation
is that the equivalence is non-spurious, i.e., that the
definitions themselves are not introducing information.
Unfortunately, merely requiring U to be a conjunction
of explicit definitions allows spuriosity and informa-
tiveness.

Consider the following example. Let W be empty.
Let Y = (Y l , Y 2) , where Y1 and Y 2 are 0-ary
predicates.12 Let A l [W , Y] be defined as Y1 A - Y l .
Let the definitions U be (21 E Y 1) A (2 2 = y Y l) ,
where Z1 and 2 2 are 0-ary predicates. Let

d!f (21,22), and let A2[W,Z] be defined as

We do not use Y2 immediately, but we will use it later
when we continue this example in the discussion after Def-
inition 7.

del

21 A 22. Then U implies that A1 is equivalent to
A2. Yet this contravenes our intuition of a reasonable
definitional reformulation. A1 is inconsistent, i.e., is
equivalent to False . A2, by contrast, is consistent.

Viewing the direction of reformulation from A2
to A l , in effect U is introducing some information,
namely that 21 E -122. The source of this problem is
that, even though U is a conjunction of explicit defini-
tions, U is itself not always consistent when it is viewed
in this “return direction” of the reformulation (i.e.,
from A2 to A l) . Yet, to us, any notion of equivalence-
preserving definitional reformulation ought to be sym-
metric, i.e., kosher in both directions: from A1 to A2
and from A2 to A l . We would, therefore, like to im-
pose some kind of additional constraint on U to guar-
antee intuitive uninformativeness and non-spuriosity of
the equivalence between the two representations. Be-
low, we do this by formalizing U’s consistency and its
relationship to directionality more precisely.

The idea of a conservative extension, standard in
the classical logical literature, provides a nice notion
of uninformativeness in terms of mentioned symbols.
Definition 5 (Conservative Extension)
Let A l [P] be a formula13 mentioning only (the tuple
of symbols) P . Let Q be (a tuple of symbols) distinct
from P . Let A2[P,Q] be a formula mentioning only
P U Q. Then we say that A2[P, Q] is a conservative
ettension of Al[P] when:

VP. [(go. A2[P, Q]) 3 A l [P]]
or, equivalently, when both:

VP, 8. A2[P, 41 3 A l [P]

Another way to view the idea of conservatism in this
definition is that A2 “says” exactly as much about P
as A1 does. A2 in addition says stuff about &. I.e., for
any formula G[P] mentioning only P :

Suppose that

Vp. [A1[Pl 3 (30. W P , Q 1) I

A2[P, Ql I= G[Pl A1PI I= G[P1

A2[P,&] sf A l [P] A U[P,Q]
Then we say that V [P , Q] is a conservafively eztending
update to A l [P] .

Intuitively, we can thus view a conservatively ex-
tending update U[P, Q] as uninformative in a precise
sense, namely about the old symbols P.
Not at ion:
Let D 5 E stand for the universally quantified im-
plication Vz. D (z) 3 E(z) , where D and E are open
formulas with the same arity of free variables (Le.,
are similar), and z stands for a tuple of free indi-
vidual (object) variables. Let D=E then be defined
analogously as the universally quantified equivalence
V z . D (z) P E(z) . We also apply this notation to tu-
ples D = (&, . . .,&) and E = (El,. . . ,Em): e.g.,

‘jin (higher-order) classical logic

75

, .

D=E stands for

Fact 6
(Explicit Definitions Are Conservative)
(Conjunctions of) explicit definitions of new symbols
(e.g., predicates) are always conservatively extending
updates. Le., in Definition 5 , suppose U[P,Q] is a
conjunction of explicit definitions of each symbol in Q:

(Here, we are using the tuple = notation introduced
above, and applying it also to functions and terms.)
Then U[P, 41 is a conservatively extending update, for
any A l [P] .
Conservative Extension, Uninformativeness,
and Directionality:
Equipped with the idea of a conservative extension,
we are now ready to return to the question of refin-
ing the basic idea of definitional reformulation. In our
“first cut” above, we found a need to formalize the con-
straint that the putative definitional reformulator U be
uninformative, in both directions of the reformulation.
In Definition 5, we observed that the property that a
“definitional” reformulator U[P, Q] is a conservatively
extending update precisely expreswses U’s uninforma-
tiveness, in the direction of A1 to A2, i.e., about P.
There, however, U is not really quite a reformulator
in the sense we discussed in the %rst cut”, since A2
mentions not just the new symbols Q, but also the old
symbols P . However, we can eztract the notion of un-
informativeness present there, i.e., the “conservatism”
in the idea of a conservative extension.

The property that U is a conservatively extending
update is: A W I I= 3Q. W’,Ql

I= (VP. Al[J‘l 3 3Q. W,Q1)

D1=E1 A . . . A Dm=Em .

Q = EIPI

which we can also write as:

One can view the right-hand-side as a satisfiability
(i.e., consistency) property. This satifiability / con-
sistency is conditional on A l .

We take this conservativeness property as the basis
for uninformativeness of a (putative) definitional refor-
mulator U. However, we need the “return direction“
uninformativeness as well:

which we can also write as:
A2[QI I= 3P- W’,Ql

I= (VQ. A2[01 3 3P. W’, 01)

Definition 7
(Definitional Reformulator - Basic Case)
We say that U[W,Y , z] is a definitional reformula-
tor (basic case) between two formulas Al[W,Y] and
A2[W,Z] (where W, Y , and 2 are distinct tuples of
symbols) when:
1. U implies the equivalence of A1 and A2:

2 . U is uninformative, Le., conservative, in both direc-
tions of the reformulation, i.e., with respect to A1

I= U[W, y, zl 3 W [W , YI = A2[W 4)

and with respect to A2:
(VW,Y. Al[W, Y] 3 32. U[W, Y, 21) + (VW, 2. A2[W, 21 3 3Y. U[W, Y, 21)

Discussion; Directionality:
Having the second direction, in addition to the first
direction, of the conservativeness property in Defini-
tion 7 rules out the nastily-behaved example that we
discussed in Observation 4. However, the conservative-
ness property in Definition 7 reassuringly does permit,
for example, the following, more intuitively reawn-
able basic-case definitional reformulator:

U[W, Y, z] gf (21 G Y 1) A (2 2 = 7 Y 2)
(where the symbols are as in the example discussed in
Observation 4) for any A l , A2.

The property that U consists exclusively of (a con-
junction of) explicit definitions ensures, in general,
only one direction of conservativeness.
Conditionality Versus Unconditionality of Con-
servat iveness :
Definition 7 is perhaps too “custom” in one regard,
however. The conservativeness property is conditional:
it depends on the particular A1 and A2. This is per-
haps unsatisfactory intuitively, at least for some pur-
poses, as a notion of “definitional” in “definitional re-
formulator”.

Alternative Definition of Conservativeness: Un-
conditional Version:
As an alternative definition of the basic case of defi-
nitional reformulator, we observe that one can use a
stronger (i.e., more strongly constrained, special case)
notion of conservativeness instead:

I= VW, Y . 32. U[W, Y, 21 + VW, Z.3Y. U[W, Y , Z]
to replace the conservativeness property (2 .) in Defi-
nition 7. This “uncondifional” version of the conser-
vativness property does not depend on A1 and A2:
i.e., it implies that the “conditzonal” conservativeness
property (2.) in Definition 7 holds for any A1 and A2.

Alternative Definition of Conservativeness:
Backgrounded Version:
As an intermediate position between the conditional
and unconditional versions of the conservativeness
property, we observe that one can formulate condi-
tionality in a somewhat abstracted fashion: in terms
of the symbols W that are in common between the two
representations. We will find it convenient for our later
definitions to employ a notion of a background G[W]
to the reformulation. One can view C [W] as, in effect,
included in both Al[W, Y] and A2[W, 21. We then de-
fine the “backgrounded” versicn ’ the conservativeness
property as:

G I 7 + W. 3Z.U[iI 21
G w + vz. 3Y. U [W , ; , Z]

76

In the remainder of this paper, we will use this last,
“backgrounded” version of the conservativeness prop-
erty. We do so in order to formally simplify our later
definitions of more complex kinds of definitional re-
formulators and reformulations, which are oriented to-
wards particular uses. However, the “conditional” ver-
sion of the conservativeness property is more funda-
mental and general, we believe, and is interesting to
explore: we plan to do so in the future.
No Requirement of Explicitness:
Note that in Definition 7 , we did not require U to be
in the form of a conjunction of explicit definitions of
new symbols in terms of old symbols. We formalized
/ summarized the “definifional” flavor of the reformu-
lator as, simply, its conservativeness. Our definition
of definitional reformulator thus allows U to consist of
implicit definitions (e.g., with recursion) and partial
definitions (i.e., necessary and sufficient conditions).
(Later, in our result about the asocial monadic special
case of disjoint describability (Theorem 16) , the refor-
mulator will consist exclusively of explicit definitions,
however .)

Next, we define a definitional reformulation of a
group of formulas, using a single common reformula-
tor: one-by-one, into a new group of formulas. For this
purpose, it is convenient to be able to abstract away
from conditionalizing conservativeness on each of those
formulas: we thus use the backgrounded version of con-
servativeness.
Definition 8 (Group Reformulator)
Let ETl[W, Y] and ET2[W, Z] each be a similar14
tuple of formulas; these formulas may be open
or closed. We call each tuple a group. Let
U[W, Y, Z] and G[W] be closed formulas. We say that
U[W, Y, Z] is a group reformulator Between ETl[W, Y]
and ET2[W, 21, given the background G[W] when:
1. U is conservative (given the background) with re-

spect to Y and also with respect to 2:
G[W W. 32. U W,Y,Z
C[W 1 vz. 3Y. u I 1 w, Y, z

2. U reformulates each formula in either group into the
corresponding formula in the other group. Le., U im-
plies the equivalence of corresponding member for-
mulas (subscripted by j) in the two groups:

U [W , y, 21 A C[WI I=
Vj. ETIj[W, Y] = ET2j[W, Z]

Disjoint Describability and Disjoint
Individuals

Next, we show how to use definitional reformulation
to generalize the disjoint predicate special case: to the
more general case of disjoint describability. More pre-
cisely, we use definitional reformulation to transform

“Terminology: By ysimilar”, we mean of same length,
and with same arities for their members.

a disjointly describable global axiom set into a rep-
resentation that has disjoint predicates, and then to
transform back again after decomposition. Figure 4
illustrates. We show that the disjoint describability
case, like disjoint predicate case, has a clean, parti-
tioning conjunctive decomposition, which, moreover,
implies interesting localities of inference and safeties
of updating. We then identify an interesting special
case of disjoint describability (asocial-monadic) that,
like the disjoint predicate case, is easily recognizable
in terms of the syntax of the starting global axiom set.

Definition 9 (Syndicate Reformulator)
We define a syndicate reformulator as a tuple of group
reformulators that obeys an extra syndication prop-
erty: their conjunction is also conservative.

More precisely: Let ETTl[W, Y] and ETT2[W, Z]
each be a similar tuple of tuples of formulas; these for-
mulas may be open or closed. Each element of the top
level of tupling is itself a tuple of formulas cf. Defini-
tion 8. The top level tuple is thus a Syndicate whose
elements are groups of formulas.

Let UT[W, Y , Z] be a tuple of closed formulas, of the
same length as the top level tuples above. I.e., let it
consist of one formula per group. Let G[W] be a closed
(background) formula, as in Definition 8.

Below, we use i to subscript groups, and j to sub-
script formulas within groups.

We say that UT[W, Y, Z] is a syndicate reformula-
tor between ETTl[W,Y] and ETTZ[W,Z], given the
background G[W] when:
1. For each group i , UTi is a group reformulator be-

tween ETTi and ETT2i (given the background):

We begin with some preliminaries.

vi. uTi[w, Y , z] A G[W]
V j . ETTlij[W, Y] = ETT2ij[W, Z]

del 2. the conjunction UC E &UTi is conservative
(given the background) with respect to Y and also
with respect to 2:

G[W] VY. 32. UC[W, Y, Z]
G[WI VZ. 3Y. UC[W, Y , Z]

The r e m n we call the above a syndicate reformulation
is the linkage between the different groups imposed by
the conjunction’s (UC’s) conservative extension prop-
erty. This implies, but is not implied by, the conjunc-
tion of the conservative extension properties for each
group’s reformulator UTI’.

Definition 10
(Partitioning Syndicate Reformulator)
We say that a syndicate reformulator cf. Definition 9
is 2-partitioning when:

vi. UTi[W, Y, 2) gf Ui[W, Y, Zi]
V i , j . ETT2ij[W, Z] gf ETT2ij[W, Zi]

where V j # k. Z j n Z k = 0, i.e., the appearances of the
symbols 2 are partitioned by group.

7 7

resulting
conjunctive

decomposition
(disjoint

describability)

Definition 11 (Disjoint Describability)
Suppose that U T is a Z-partitioning syndicate refor-
mulator as in Definition 10, where for each group i ,
ETTli is defined as the concatenation of a (closed,
base) formula Bli with a tuple of (open, default) for-
mulas Dli, and similarly, ETT2i is the concatenation
of B2i and D2i.

Let Bl stand for the conjunction of the Bli’s; and
D1 stand for the concatenation of the Dli’s. Let 8 2
and 0 2 be defined similarly.

Suppose also that PDC(B2; 0 2 ; R; f i z W ; W, 2)
fulfills the conditions in Theorem 1 (disjoint predi-
cates), where the grouping, and the partition there on
Z, is the same as in UT.

Then we say that PDC(B1; D1; R; f i z W ; W , Y)
is Ql~joinfly describable under (definitional) reformu-
lat. ~ by UT(W, Y, Z], given G [W] .
Theorem 12
(Clean Decomposition, given Disjoint Describ-
ability)
If a PDC is disjointly describable, then it is cleanly
conjunctively decomposable into slices corresponding
to the partitioning grouping employed in the reformu-
lation. Le., then the grouping employed in the refor-
mulation forms the basis for a clean slicing.

PDC(B1; D1; R; f i z W ; W , Y) is disjointly describ-
able under (definitional) reformulation by UT[W, Y, 4,
given C[W, as in Definition 1 1 . Then

More precisely: Suppose

PDC(B1; D1; R; f i z W ; W, Y) E
Ai PDC(B1i; Dli; Ri; f i z W ; W, Zi)

where Ri %‘ R” is the internal prioritization of the
group of defaults Dli , whose index set (tuple) is Ni.
(Equivalently, the Zi on the right hand side could be
replaced by 2.)

Theorem 1 plus some lemmas
about definitional reformulation of circumscriptions.

Proof Overview:

I
I
I
I conjunctive
I decomposition
I (disjoint

predicates)
I
I

Figure 4 illustrates the logical flow of the proof. 0

Theorem 12 immediately yields results about local-
ity of inference, using Theorem 2 , and about safety
of updating, using Theorem 3.

Next, we consider a special case of disjoint describ-
ability: asocial-monadic.

Theorem 13
(Fixed Cases Reformulation of Defaults)
In PDC, defaults can be reformulated by relativizing
them to fixed (-formula) cases.

More precisely: In a PDC(B; D N ; R; f i z W ; Z),
suppose that

where zi is a (possibly empty) tuple of individual (ob-
ject) variables, and where, for each i , j , the (possibly)
open (elementary) formula Fij[Z, z i] is fixed relative
to the circumscription (e.g., it mentions only function
symbols; remember all functions are fixed). For each
default index i , we call each Fij a fized case. Suppose
also that

Vi E N . B[Z] /= Vzi. vyll Fij[Z, zi]

BPI I=
Vi, j . Vzi. Eij[Z, zi] E (Fij [Z, zi] 3 Di[Z, z i])

I.e., suppose that each Eij is equivalent to the default
Di relativized to the fixed case Fij. Then

PDC(B; D; R; f i z W ; 2)
PDC(B; E; RR; f i z W ; Z)

where the tuple E stands for the concatenation of all
the Eij’s, and where RR is defined as the composi-
tion of R (as external prioritization) with a tuple OT
of empty prioritization p.0.’~. Each of 0T’s elements
is an empty prioritization p.0. OTi that is of size m-
and ccxesponds to (Le., has as domain) the index se
of the isub-) tuple Ei.

Proof Overview: The key is that each original
default pre-order is equivalently reformulated, in the

78

context of the circumscription’s “augmentation” (Le.,
second-order-quantified part in its definition cf. section
3), into a parallel default pre-order corresponding to
Ei. 0
Definition 14 (Asocially Monadic)
We say that a prioritized default circumscription
PDC(B; D; R; f i z W ; Z), or a corresponding CLD ax-
iom set, is asocially monadic when:
1.

2.

3.
4.

5.

6.

7.

8.

9.

All predicates in Z are monadic, i.e., 1-ary (a.k.a.,
unary).
The base sentence B has the form of a conjunction
of ~niversa l ‘~ formulas. We will refer to these as the
base formulas (axioms).
Every default formula (axiom) in D is quantifier-free.
No base sentence (axiom) in B, and no default for-
mula (axiom) in D, “mixes” individuals. Le., in their
clausal forms, no clause contains two literals with
different arguments. Intuition: different individu-
als “don’t want to have anything to do with each
other”, i.e., they are “asocial“.
All terms appearing in the base and default formulas
are ground, except for primitive variables.
The prioritization R is either layered (e.g., parallel),
or it is point-modular (see definition below).
All (explicit) fixtures are of predicate symbols (W),
rather than of arbitrary formulas. (In addition, as
usual, all function symbols are fixed.)
Uniqueness of Names Axioms (UNA): The base B in-
cludes axioms enforcing the distinctness of all terms
that appear in the base and default axioms.
Besides in the UNA, equality does not appear in
the base or default formulas. (Remember, equality,
when viewed as a predicate, is binary, not monadic.)

Definition 15
(Point-Modular Prioritization)
Point-modular prioritization generalizes (Le., the class
includes) the prioritization that is typical in default
inheritance networks. By “point” here, we mean an
individual in the logical language, either named (a
ground term, e.g. Ed) or unnamed (e.g., referred to
by a first-order variable, e.g., z in bat(z) 3 Slegs(z)).
(This idea of a point can be straightforwardly gener-
alized to a tuple of individuals (e.g., (Boss(4321), d))
to handle predicates / formulas with arity more than
one; but we are only considering here the unary case in
the context of the asocially monadic case.) By point-
modular, we mean that the overall prioritization is
equivalent to the composition of some external priori-
tization (over the points) composed with a tuple of in-
ternal prioritizations, one per point. Point-modularity
results when the prioritization is only specified be-
tween the same instantiations of different defaults.

Terminology: By universal, we mean without exis-
tential quantifiers.

15

E.g., when the bat default has higher priority than
the mammal default at each point: (the default axiom
whose default formula is) bat(Betsy) 2 2legs(Betsy)
takes precedence over (the default axiom whose
default formula is) mammal(Betsy) 3 4legs(Betsy),
bat(Joe) 3 2legs(Joe)
takes precedence over mammal(Joe) 3 4legs(Joe),
bat(Fido) 3 Slegs(Fido) takes prece-
dence over mammal(Betsy) 2 4legs(Betsy), etc., but
there is no precedence between the defaults at differ-
ent points, e.g., between bat(Betsy) 2 2legs(Betsy)
and mammal(Joe) 3 4legs(Joe). Unfortunately, we
do not have space to define point-modularity in further
detail here; it requires discussing “pointwise” prioriti-
zation somewhat similar to that in [Lifschitz, 19881,
and generalizing CLD to increase its expressivity with
respect to prioritization. Note, however, that many
point-modular prioritizations can be expressed in CLD.
See [Grosof, 1992al for more.

Theorem 16
(Decomposition by Reformulation, Individual-
Wise)
Suppose the PDC(B0; DO; RO; f ir W ; 2) is asocially
monadic cf. Definition 14. Then the circumscription
can be cleanly sliced, i.e., conjunctively decomposed,
into its individual-wise reformulation:

PDC(B0; DO; RO; fiz W; 2)

This individual-wise reformulation is defined as fol-
lows.

The basic idea of the reformulation is to divide the
base and default axioms into groups: one group per
named individual, plus a catch-all “remainder” group
for all other, unnamed individuals. Some reformula-
tion, of a relatively simple kind that is different from
decomposition and one-by-one definitional reformula-
tion, is involved in order to break up the quantified
base axioms and the open defaults into these cases.
Figure 5 illustrates this logical flow. The details of the
overall reformulation are, however, a bit involved to
define; bear with us.

To begin with, we partition the base and default for-
mulas according to which arguments appear in them.

del Let J = { 1,. . . , m } index the set of all ground
terms a j that appear in the base or default formulas.

Let BOj stand for the tuple of base formulas that
mention a j . Each of its members we write as B O j k [Z] .

Let BOV stand for the tuple of base formulas, other
than the UNA, that mention a free variable (all of these
are universally quantified). Each of its members we
write as Vz. BOVk(Z,z]. Here z is a single (free) indi-
vidual variable.

We treat the default formulas similarly to the base.
Let DOj stand for the tuple of default formulas that
mention a j . Each of its members we write as DOjk[Z].

Let DOV stand for the tuple of default formulas that
mention a free variable (i.e., that are open; all of these

/\l”=tl’PDC(Blj; D l j ; Rj; f i z W ; Z)

7 9

resulting

decomposition
conjunctive

(individual-wise)
0- J #+

-* --
--a individual-wise (point-oriented)

0 representation

0 0 of global
in old predicate symbols 0

0
0

0
0

0
0

0
0’ conjunctive decomposition

,0 via disjoint describability

0

individual-wise (point-oriented)
representation

slices
in old predicate symbols

Figure 5: Asocially Monadic: a flow diagram of the reformulation steps involved. See also Figure 4.

are quantifier-free). Each of its members we write ae
DOVk[Z, 21. Here z is a single (free) individual vari-
able.

Next, we reformulate the base and default formulae
that mention a variable.

For each j E J , let B l V j stand for the instantia-
tion of the quantified base formulas BOV to a j . Each
of its members BlVjk[Z] is defined ae the formula
BOVk[Z, a j] .

Let UNNAMED[z] stand for the formula
A j c J 2 # aj-

Let B2V stand for the tuple of quantified base for-
mulas after relativization to the unnamed case. Each
of its members B2Vk[Z] is defined as:

Vz. UNNAMED[z] 3 BOVk[Z, z]
For each j E J , let D l V j stand for the instantiation

of open default formulas DOV to ai. Each of its mem-
bers D l V j k [A is defined ae the formula DOVk[Z,aj].

Let D2V stand for the tuple of open default formulae
after relativization to the unnamed case. Each of its
members D2Vk[ZI is defined as:

UNNAMED[z] 3 DOVk[Z, z]
For each j E J , Let B l j stand for the conjunction

of (all members of) the tuples BOj and B l V j .
For j = m + 1 (i.e., the unnamed case), let B l m + 1

stand for the conjunction of (all members of) the tuple
B2V plus the UNA.

of the tuples DOj and D l V j .
For j = m + 1 (Le., the unnamed case), let D l m + 1

stand for the tuple D2V.
Let Rj be defined as the prioritization internal to

D l j , i.e., as RNJ, where, for each j = 1 , . . . , m + l , N j
is the index tuple of D l j .

We use a first stage of refor-
mulation employing Theorem 13. This stage involves
what we called above an ”extra” kind of reformula-
tion: e.g., to reformulate each open default axiom and
each quantified base axiom into a collection of “point”-
case (individual-case) axioms, plus a remainder-case
(unnamed case) axiom. Then we use a second stage
partitioning syndicate reformulation into disjoint de-
scribability, employing Theorem 12. In that second
stage of reformulation, we treat the UNA as back-
ground. There, the newly introduced predicates are
all 0-aty, except for those corresponding to the catch-
all case. The definitional reformulator consists
of the explicit definitions of these newly intro-
duced predicates. There is one new predicate
for each ground atom in the original represen-
tation. Note that the second stage itself combines
two kinds of reformulation: definitional reformulation,
to transform into a representation with disjoint predi-
cates, and conjunctive decomposition. 0

Proof Overview:

For each j E J, Let D l j stand for the concatenation Figure 5 illustrates the logical flow of the reformula-

original representation
global

conjunctive

legged-ness

-1
meetings

conjunctive individual-wise (asocially monadic)
decomposition applied to legged-ness slice

meetings

1
legged-ness

0 [1 0 0
Fido Joe Betsy unnamed

Figure 6: Conjunctive Decomposition using Asocially Monadic and Disjoint Predicates: In our main motivating
example (section 2) , we can conjunctively decompose the global axiom set (after the last update U,) into two
slices by employing the disjoint predicates result (Theorem 1): one slice about legged-ness, and the other slice
about meetings. This first-stage decomposition is the same as in Figure 3. We can conjunctively decompose the
legged-ness slice, individual-wise, by employing the asocially monadic result (Theorem 16). That is, in a second
stage, we slice (more finely) within a slice that a r m from the first stage. The second stage thus yields a second,
finer-grain decomposition of the global axiom set, containing the meetings slice (unchanged from the first stage)
plus each of the individual-case legged-ness slices. Together, the two stages exemplify the ability to decompose
hierarchically / recursively. Each of the named-individual / “point” slices in the second stage contains a set of
axioms that correspond to the instantiation / particularization of the original legged-ness axioms (U,, U2, and U,)
to (the case of) one named individual, e.g., Joe. Each outer box stands for a decomposition. Each inner box stands
for a constituent axiom set.

tion steps involved; it builds upon Figure 4. nbat Joe i bat(Joe)

Application to Main Example: (Continued from
the discussion in section 5:) Consider our main m e
tivating example (about legged-ness and meetings,
from section 2) . There, after the final update US
(and, indeed, at any earlier point in the sequence
of updates), the legged-ness slice, i.e., the set of ax-
ioms about legged-ness (Ul, Uz, and U,) is asocially
monadic. It can thus be conjunctively decomposed
cleanly, individual-wise. Figure 6 illustrates and ex-
plains this decomposition. As we discussed earlier, the
definitional reformulation involved in the individual-
wise decomposition cf. Theorem 16 introduces a new
0-ary predicate for each ground atom in the original
representation; in this example, two such new predi-
cates are:

n 2 l e g s ~ o e ~ i e g s i ~ o e)

Theorem 17
(Individual-wise Locality of Inference, when
Asocially Monadic)
In Theorem 16, each slice j , where j is the (index of) a
named individual (cf. statement of that Theorem), is
sound and complete, relative to the global theory, for
inference over its corresponding sub-language. That
sub-language consists of the ground formulas (sen-
tences) in which the only individual mentioned is j
(e.g., Betsy). This locality holds both for forward in-
ference, and for backward inference (query-answering).
Note that to perform inference using any subset SJ of
the named individuals J, one need only work in the
conjunctive combination of those slices corresponding

81

to SJ.
For query-answering about a new named individual

b (named in the query), just introduce the new term
b into the set of terms that are indexed by J in the
theorem. The only additional requirement is that the
U N A ensure its distinctness from the other named in-
dividuals.

Application to Main Example: Thus after each
update, inferences about any named individual’s (e.g.,
Joe’s) legged-ness can be made by working in a slice
axiom set that has been instantiated / particularized
to that individual (Joe). One advantage of this is
that simpler inference algorithms are available for such
an expressively simpler axiom set. In this case, there
is a decidable polynomial-time procedure see “total-
propositional” case results in [Grosof, 1992b \). By con-
trast, there is no general inference procedure, even
for query-answering, yet available for the full exam-
ple (i.e., including the meetings aspect). (See next
section for discussion of inference procedures available
for prioritized circumscription.) This illustrates that
decomposition-type reformulation is useful to exploit
available / known tractable special cases to do part of
the inference in a NM theory, even when the overall
theory is intractable or undecidable (see next section
for more discussion of this point.)

Theorem 16 also immediately yields a powerful re-
sult about belief revision.
Theorem 18
(Safety of Updating, when Asocially Monadic)
In CLD, let the previous axiom set be asocially
monadic. Let an update U consist of base, default,
and prioritization axioms, such that the formula parts
of the base and default axioms are ground and men-
tion only a set of named individuals IU. Then all of
the previous conclusions !erived solely from the rest of
the named individuals’ -3s (i.e., the slices according
to Theorem 16) are safr ,-der the update.
Application to Main Example:
E.g., after update U4 (mentioning only Joe and Spot),
this theorem tells us that we do not have to re-consider
whether the previous conclusion Plegs(Betsy) is still
sanctioned: it must be preserved. Thus we can know,
with relatively little computational work (see discus-
sion of complexity in next section), that most of the
previous NM conclusions are safe.
Disjoint Groups of Individuals:
Definition 14 and Theorems 16, 17, and 18 ala0 gener-
alize straightforwardly to considering disjoint groups of
individuals, where any syntactic mixing in the axioms
involves only individuals within the same group.

Discussion, Conclusions, and Future
Work

Proof Procedures: Prioritized default circumscrip
tion is expressively reducible to prioritized predicate

circumscription (see section 3). There exist several
backward proof procedures for fairly expressive classes
of prioritized predicate circumscription, including for
layered (stratified) prioritization [Przymusinski, 19891
[Ginsberg, 19891 [Baker and Ginsberg, 1989) [Inoue and
Helft, 19901 [Inoue e l al., 19911. More interestingly,
[Geffner, 19891 contains a proof theory and proof p r e
cedures which promise to be easily adaptable (using
an equivalence theorem reported in [Grosof, 19911, de-
tailed in [Grosof, 1992b]) to circumscription with non-
layered prioritization.

Related Work: Note that we emphasize updating
with new defaults, not just new for-sure axioms, un-
like the conditional approaches to NMR (e.g., [Kraus
et al., 19901). The ideas and results here apply to other
NM formalisms, e.g.: Default Logic and Poole’s [1988]
and Brewka’s [1989] systems, via the equivalence re-
sult in [Lifschitz, 19901; as well as Geffner’s [1989] sys-
tem. The closest idea to conjunctive decomposition
in the previous NMR literature is [Rathmann, 19901,
who focussed, however, on conjunctively integrating
heterogeneously-specified circumscriptive theories. He
considered, moreover, only layered-priority predicate
circumscriptions. Rathmann’s and our work was de-
veloped independently. We are unaware of any other
applications of reformulation to non-monotonic reason-
ing.

More Decompositions and Safeties: We did not
have space here to report a number of additional results
[Grosof, 1992b] about decompositions and their impli-
cations for safeties of updating, including about higher
prioritization, hypotheticals, syntactic positivity, “se-
rial” decompositions, weaker forms of irrelevance; and
about the relationship of decompositions to specifica-
tion and backward inference.

Al+.rithms and Automation of Our Results:
In fL work, we plan to automate recognition of de-
comc ons and safeties of updating cf. our theorems,
and : tctual performance of the according reformu-
latior, ;or the disjoint-predicates and asocial-monadic
cases, Ate have polynomial-time algorithms to per-
form this: 0(n3) time, where n is the size of the CLD
axiom set.

Exploiting Truth Maintenance: Such recogni-
tion establishes “monotonicity” (i.e., implication) rela-
tionships between theories and sub-theories (e.g., the-
ory after update versus theory before update; or theory
versus slice). We plan also to automate a generalized
ATMSstyle [de Kleer, 19861 high-level architectural
book-keeping scheme to exploit such stored monotoni-
city relationships to support inference and belief revi-
sion in a prioritized database. [Grosof, 1992bI gives
details.

More General Cases of Disjoint Describabil-
ity: In future work, we aim to find cases of dis-
joint describability that are xiore general than asocial-
monadic, but are still easily recognizable syntactically
(in terms of the syntax of the global axiomset). E.g., in

82

our main example, it would be nice to be able to par-
ticularize the Meetings slice to the individual Ed, in
the same way that the asocial monadic result guaran-
tees one can particularize the Legged-ness slice to the
individual Joe. Right now, we can show this particu-
larization about Ed is legitimate, but our proof method
is by hand. We would like to be able to formalize and
automate a class of decompositions for which this (Ed
etc.) is an instance.

Conclusions I: See Strategy and Summary in
section 1.

Conclusions 11: Analyzing Computational
Advantages of Reformulation: In future work, we
also plan to analyze in detail the computational ad-
vantages and trade-offs involved in our decompositions
and definitional reformulations. You may be wonder-
ing why we did not give any such computational com-
plexity analysis in this paper. The main reason is that
the picture is quite complicated for non-monotonic rea-
soning.

Even for query-answering in propositional default
theories without priorities, current results show worst-
case is exponential (NP-hard [Selman and Kautz,
19891 [Kautz and Selman, 19891 t Selman and Levesque,
19891. Thus: Divide-to-conquer, :.e., seeking locality,
is clearly desirable.

But the basic complexity results for any kind of for-
ward reasoning with priorities, for any kind of belief
revision, and even for most kinds of backward (query-
answering) reasoning are not available for circumscrip-
tion, or other NM formalisms. Known tractable cases
are highly restricted. [Selman and Kautz, 19891
[Kautz and Selman, 1989 f give polynomial-time back-
ward procedures for special cases, including restric-
tions of Horn, of propositional default reasoning in
their model-preference logic and in Default Logic. Del-
grande [1991] gives a polynomial-time backward pro-
cedure for a Horn propositional case of his conditional
logic.)

However, we believe that as these results become
available, we will be able to show that decomposition
and reformulation are advantageous. Our aim has been
to develop methods that will be broadly applicable,
and to break off a piece of the overall hard problems
of non-monotonic reasoning. In current work, we are
addressing how to relate our results to currently known
tractable and intractable cases.

One clear advantage is that for many cases with
uantification, for which worst-case is undecidable

JReiter, 1980) [Kolaitis and Papadimitriou, 19881):
We are able to reformulate some of the reasoning to
become propositional, hence decidable. E.g., when rea-
soning about individuals, for the socially monadic
class of theories (see Theorem 16).

Acknowledgements
Thanks to Devika Subramanian, Vladirnir Lifschitz,
and Michael Lowry for long-ago useful discussions on

logical aspects of definitional reformulation. Thanks
to Leora Morgenstern, Hector Geffner, and two anony-
mous reviewers for their comments on previous drafts.

References
A. Baker and M. Ginsberg. A theorem prover for pri-
oritized circumscription. Proceedings IJCAI-89, pages
463-467, Detroit, MI., 1989.
G. Brewka. Preferred subtheories: An extended log-
ical framework for default reasoning. Proceedings
IJCAI-89, pages 1043-1049, Detroit, Michigan, 1989.
K. Clark. Negation as failure. In H. Gallaire and
J. Minker, editors, Logic and Data Bases, pages 293-
322. Plenum Press, New York, 1978.
J. de Kleer. An assumption-based truth maintenance
system. Artificial Intelligence, 28:280-297, 1986.
James P. Delgrande. Incorporating nonmonotonic
reasoning in horn clause theories. Proceedings of
AAAI-91, pages 405-411, 445 Burgess Drive, Menlo
Park, CA 94025, 1991. AAAI Press.
J. Doyle. A truth maintenance system. Arfificial In-
telligence, 12:231-272, 1979.
H. Geffner. Default Reasoning: Causal and Condi-
tional Theories. PhD thesis, Computer Science De-
partment, UCLA, Loa Angeles, CA, 1989. Revised
version published by MIT Press, 1992.
M. Ginsberg. A circumscriptive theorem prover. Ar-
tificial Intelligence, 39:209-230, 1989.
Benjamin N. Grosof. Generalizing prioritization. Pro-
ceedings of the Second International Conference on
Principle of Knowledge Representation and Reason-
ing, pages 289-300, April 1991. Also available as
IBM Research Report RC15605, IBM T.J. Watson
Research Center, P.O. Box 704, Yorktown Heights,
NY 10598.
Benjamin N. Grosof. Generalizing prioritization ii
(working title). Working paper., 1992.
Benjamin N. Grosof. Updaiing and Structure in Non-
Monotonic Theories. PhD thesis, Computer Sci-
ence Dept., Stanford University, Stanford, California
94305, 1992.
Katsumi Inoue and Nicolas Helft. On theorem provers
for circumscription. Working paper. This is a revised
version of a paper appearing under the same title in
the Proceedings of the Canadian Conference on Com-
puter Science and Artificial Intelligence '90, Ottawa,
Canada, May 1990., Apr 1990.
Katsumi Inoue, Nicolas Helft, and David Poole.
Query answering in circumscription. Proceedings of
IJCAI-91, pages 426-431, San Mateo, California,
1991. Morgan Kaufmann.
H. Kautz and B. Selman. Hard problems for simple
default logics. Proceedings of fhe First Infernafional
Conference on Principle of Knowledge Representa-

8 3

lion and Reasoning, pages 189-197, Toronto, Ontario,
1989.
Phokion G. Kolaitis and Christos H. Papadimitriou.
Some computational aspects of circumscription. Pro-
ceedings of AAAI-88, pages 465-469, San Mateo, Cal-
ifornia, 1988. Morgan Kaufmann. Held Minneapolis,
MN.
S. Kraus, D. Lehmann, and M. Magidor. Preferential
models and cumulative logics. Artificial Intelligence,

Vladimir Lifschitz. Some results on circumscription.
Proceedings of the Firsi A A A I Non-Monotonic Rea-
soning Workshop, pages 151-164, Oct 1984. Held New
Paltz, NY.
V. Lifschitz. Computing circumscription. Proceedings
IJCAI-85, pages 121-127, Los Angeles, CA.
Vladimir Lifschitz. On the declarative seI :cs of
logic programs with negation. In Matthev. .;ins-
berg, editor, Readings in Nonmonotonic .- oning.
Morgan Kaufmann, San Mateo, CA, 1987.
V. Lifschitz. Circumscriptive theories: a logic-based
framework for knowledge representation. Journal of
Philosophical Logic, 17:391441, 1988.
Vladimir Lifschitz. O n open defaults. Proceedings
Symposium on Computational Logic, Brussels, Bel-
gium, 1990.
J. McCarthy. Applications of circumscription to for-
malizing commonsense knowledge. Artificial Intella-
gence, 28:89-116, 1986.
R. Moore. Semantical considerations on non-
monotonic logics. Artificial Intelligence, 25~75-94,
1985.
D. Poole. A logical framework for default reasoning.
Artificial Intelligence, 36:27-47, 1988.
Teodor Przymusinski. On the declarative semantics of
deductive databases and logic programs. In J. Minker,
editor, Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann, San Mateo, CA.,
1988.
T. Przymusinski. An algorithm for circumscription.
Artificial Intelligence, 38~49-73, 1989.
Peter K. Rathmann. Nonmonofonic Semantics for
Partifioned Knowledge Bases. PhD thesis, Computer
Science Dept., Stanford University, Stanford, Califor-
nia 94305, Jun 1990.
R. Reiter. A logic for default reasoning. Artificial
Intelligence, 12:81-132, 1980.
B. Selman and H. Kautz. The complexity of model
preference default theories. In M. Reinfrank et al.,
editor, Proceedings of the Second International Work-
shop on Non-Monotonic Reasoning, pages 115-130,
Berlin, Germany, 1989. Springer Lecture Notes on
Computer Science.

B. Selman and H. Levesque. The tractability of path-
based inheritance. Proceedings IJCAI-89, pages 1140-
1145, Detroit, MI., 1989.
D. Touretzky. The Mathematics of Inhedance Sys-
terns. Pitman, London, 1986.

44:167-207, 1990.

$5.

H e l m

Scare Tactics: Evaluating Problem Decompositions
Using Failure Scenarios

B. Robert Helm and Stephen Fickas

Department of Computer and Information Science
University of Oregon

:> -53
1 . /

/ ‘

bhelm@cs.uoregon.edu

Abstract

Our interest is in the design of multi-agent problem-solving sys-
tems, which we refer to as composife sysfem. We have proposed an
approach to composite system design by decomposition of problem
statements. An automated assistant called Critter provides a library
of reusable design transformations which allow a human analyst to
search the space of decompositions for a problem.

In this paper we describe a method for evaluating and critiquing
problem decompositions generated by this search process. The
method uses knowledge stored in the form offailure decomposi-
fions attached to design transformations. We suggest the benefits of
our critiquing method by showing how it could re-derive steps of a
published development example. We then identify several open
issues for the method.

Introduction
Our group is interested in the design of composite system,
ones that encompass multiple agents cooperating in an ongo-
ing activity Pickas & Helm, 19921’. We arrived at this inter-
est while studying the processes of software development.
Systems analysts in the domains we studied [Fickas and
Nagarajan, 19881 focused on policies and concerns which
cut across human. hardware and software components. In
composite system design, software agents are treated the
same as human and physical agents, as components to be
integrated together to solve larger system constraints. We
have developed a design model, called Critter, to help a
human designer create a composite system design [Fickas
and Helm, 19921.

Figure 1 shows the place of composite system design
within the more general system lifecycle we envision. We
view the design process of a system as composed of four
phases:
1. Acquisition. The designer acquires an initial. informal

statement of the problem in terms of text descriptions and
diagrams.

2. Formalization. The designer creates an initial formulation
of the problem in terms of system and constraints. The
initial system formally describes a minimal set of
assumptions about possible behavior of the target system.

1. This work was supported by the National Science Foundation
under grant CCR-880485.

fickas@cs.uoregon.edu

The constraints formally describe the desirable behavior
in terms of the initial system.
Composite system design. Given the formulation of the
problem as initial constraints and system, the designer
uses Critter to build a formal specification of a composite
system for the problem. A composite system is a set of
interacting, reactive components called agents. Each
agent is associated with a set of responsibilities, con-
straints which the agent’s behavior must satisfy. If all
agents behave according to their responsibilities, the
composite system will solve the desired problem.
Implementation. The agents of the composite system are
implemented in the appropriate “technology” according
to their specifications. This could mean producing soft-
ware or manufacturing hardware. It might also involve
writing legal statutes or training manuals describing the
responsibilities of humans playing the role of an agent.

Flaure 1. Context of cornPosite svstern desian.

1. Acquisition

I 2. Formalization *

I

3. Composite Systemr

4. Implementation ~

I
I ‘ I

In designing a library circulation system, for example, the
designer first acquires an informal statement of assumptions
about the system, and constraints such as “Library patrons
get the books they want” and “Every book is accounted for”.
The designer formalizes the system and constraints. The
designer then uses Critter to design a composite system rep-

85

resenting the library. This formally specifies the responsi-
bilities of agents such as the online catalog (“Report
catalog entry if book title found”), the antitheft devices
(“Sound alarm when magnetized book passes through the
gate”), and even the library patrons (“Look in the online
catalog if the book title is known”). Finally, the library
agents are implemented. For the online catalog and
antitheft device. this would involve writing or acquiring
software and hardware. “Implementing” the library patron
implies writing regulations and guidebooks to inform
patrons of their role.

We have begun to formalize an approach to phase 3,
composite system design, by decomposing problem state-
ments. The designer incrementally decomposes the global
constraints in the initial problem statement into the con-
junction of more manageable subconstraints. The designer
then ussigns responsibility for these consuaints to particu-
lar agents. For example, the designer of a library system
could decompose the global constraint “Library patrons
get the books they want” into “Library patrons can find the
books they want” and “Library patrons can get the books
they find.” The patron and the online catalog agents are
assigned responsibility for the former constraint: the
patron and the 1ibrary.staff agents are assigned responsi-
bility for the lam. [Feather, 1987 illustrates the approach
by an informal example.

Critter includes a library of formally-represented com-
posite system design tactics, and a suite of tools for auto-
mated evaluation and critiquing of the designs generated.
To incorporate the decomposition method into Critter, we
need to (1) identify and formalize general tactics for
decomposing problem statements, and (2) identify knowl-
edge which Critter could use to critique problem decom-
positions.

This paper focuses on the latter problem, that of critiqu-
ing problem decompositions. We illustrate a method for
generating critiques, by showing how it rationalizes spe-
cific steps in a published development example [Feather,
19871. In that example, Feather informally derived an ele-
vator system design from the global constraints of never
unnecessarily delaying passengers, and never moving pas-
sengers further from their destination. The development
was guided by Feather’s intuitions of the problem, and his
domain knowledge. We show how we can capture some of
this knowledge, in the form of a library of failure scenar-
ios. We then discuss the research issues raised by this
example.

1. We propose general techniques for evaluating problem
decompositions in multi-agent systems. These tech-
niques may tind use beyond our interests, in formulat-
ing problems for multi-agent planning or for
distributed AI systems.

Our work addresses the workshop in two respects:

2. The evaluation approach we propose i n this paper
requires techniques for storing and using compiled
abstractions, specifically abstract plans. This workshop
may identify research we can apply to our approach.

Searching for decompositions
In this section, we outline the Critter composite system
design model, and its support for synthesizing problem
decompositions.

Critter treats composite system design as search in a
state space (Figure 2). A typical search algorithm has the
following components:

A state space representation
A set of search operators for moving between states
A solution checker which recognizes satisfactory
states.
A heuristic evaluator which identifies promising states.
A search manager which maintains a record of states
visited and operators applied.

Flgure 2 Composite design search.

I transformation I

system,

transfonnatiorh, ,ao

f solution checker/ \
critiquer

~~~ 

Each state in Critter’s search space represents a c’ 
plete composite 5‘ .  Stem design for the problem at ha .. 
The “search operators” which move from state to state are 
design transformations stored in Critter’s knowledge base. 
The solution states in the search are acceptable composite 
system designs -- Critter provides critiquing tools to help 
idenufy these. 

The last two components, heuristic evaluation and 
search management, are beyond the scope of our rescarch 
at present. For heuristic evaluation, we rely on the human 
designer. Our studies of composite system design heuris- 
tics [Feather, Fickas, and Helm, 19911 [Fickas, Feather, 
and Helm, 19911 suggest that this task will have to remain 
with the designer in the foreseeable future. Support for 
human evaluation of design operators is the focus of other 
research [Johnson and Feather, 19911. As for searc’: man- 
agement, Critter is implemented using an extendcJ form 
of IBIS [Conklin and Begeman. 19881 that provides for 
separate design states. Critter provides functions for 
searching and backtracking in this space. In our current 

86 



implementation, new states are generated by hand-simu- 
lating operator application using an editor. 

In the remainder of this section, we discuss Critter’s 
support for the first three search components: state repre- 
sentation, transformations, and solution checking. 

Design states 
Figure 3 informally represents an initial state for the eleva- 
tor design problem we use to illustrate our design 
approach. A state (hereafter “design state”) in Critter’s 
design search space has two parts: 
1. System. The system portion defines the space of possi- 

ble behaviors of the current composite system design. 
2. Constraints. The constraint portion of a design state 

defines the subset of possible behaviors which are 
viewed as legal or desirable. 

The system portion of a design state represents the space 
possible behaviors of the composite system. It specifies a 
set of objects, a set of primitive relations, and a set of 
actions which can add or delete object tuples from the 
relations. The system is thus similar to a planning domain 
for a STRIPS-like planner. 

Relations and actions in the system portion are also 
labelled by agenrs. Agents in our model are simple reac- 
tive components. A relation labelled by an agent can be 
sensed by that agent an action labelled by an agent can be 
controlled by that agent. 

A behavior is a sequence of actions. each action 
labelled by its controlling agent. A prefix of a behavior 
represents the intermediate state of the composite system 
during its operation: to avoid confusion with design states, 
we will refer to execution states of the composite system 
as “points.” As with planning domains, the system portion 
is non-deterministic; more than one action may be possi- 
ble at a given point. 

The system portion in Figure 3 includes two classes of 
agents, an elevator and set of passengers. Each passenger 
controls its own actions of entering and exiting elevators. 
A passenger can sen% which floor it is on, and whether or 
not it is in a given elevator. Passengers also have a destina- 
tion (not shown in the figure), which they know. The 
unique elevator controls its action of moving from floor to 
floor. It also can wait at a floor (not shown in the figure). 
The elevator can sense whether it is on a given floor. 

The constraint portion of a design state is composed of a 
set of constraints. Each constraint is a predicate which is 
true or false for each behavior generated by the system 
portion. A constraint may refer to either relations or 
actions in the system portion. 

The constraint portion of Figure 3 includes two con- 
straints: 
1. NeverFurther: Elevator passengers should not move 

further from their destinations. 

2. NoDelays: Passengers should not be unncccssarily 
delayed, This means that at each point in the elevator’s 
behavior, it must either move, take on, or drop off pas- 
sengers, unless no passengers exist. 

Agents in the system portion can be assigned responsibil- 
ity for constraints. If an agent has  been assigned responsi- 
bility for a constraint, that agent must act to satisfy the 
constraint. The agent must control its actions so that all of 
the behaviors it generates satisfy the constraint, 
of the actions of other agents. We call a constraint which is 
the responsibility of some agent an “assigned constraint.” 

The legal behaviors of a composite system design are 
all sequences of actions which can be generated by the 
agents in its system portion, and which satisfy all of the 
constraints and responsibility assignments of the con- 
straint portion. 

Flgure 3 Initial state of the elevator problem. 

Constraints 
;; Passengers do not move further from their destination 
NeverFurther: 
(At(f,) & Dest(p. f3) & *At(f,) * Between(fl. f2. f3)). 

;;The elevator do not unnecessarily delay 
NoDelay s: 
((3P. f on@. 0 ” EJP In(P)) * 
3f1. f2 move(fl, fi, v 3p enter(p) v 3p exit(p)). 

We have represented the system portion informally, 
which is adequate for the purposes of this paper. Critter 
represents the system portion of design states are 
expressed in a Numerical Petri Net [Wilbur-Ham, 19851 
notation, extended to include agents. 

The constraints are written in a linear-time, quantificd 
temporal logic extended to include constructs for responsi- 
bility assignment [Dubois, 19901. For the most part, the 
constraint notation used in this paper is simply the prcdi- 
cate calculus, except on the following points: 

87 



Variables app rmg in a constraint are universally 
quantified unle. otherwise indicated. 
Actions appear as predicates in  constraints. The 
expression move(f1. f2) in the NoDelays constraint, for 
instance, states that “The elevator moves from f ,  to f2 
at the current point of the system’s behavior.” Ordinary 
predicates are capitalized to distinguish them from 
actions. 
Temporal logic operators reference future and past 
points in the system’s behavior. The only consmct we 
use in this paper is the * operator, which denotes the 
next point. Thus, the expression At(f1) & Dest@, f3) & 
*At(f2) can be read “The elevator is at f l  and passenger 
p has destination f3 and at the next point the elevator is 
at f2.” 
Constraints can include responsibility assignment 
operators. [Feather. 19871 and [Dubois. 19901 give a 
formal semantics for this construct; we use it infor- 
mally throughout. 
The notation C[t/t’] denotes the constraint C with all 
Occurrences o f t  replaced by t’ .  Thus, the expression 
NeverFurther[p/pll denotes the NeverFurther con- 
straint with all occurrences of p replaced by pl. 

Design transformations 
Critter has a library of design transformations that func- 
tion as operators in the search for an acceptable composite 
system design. Each design transformation has a pattern 
which matches against parts of an existing design state, a 
result which generates in a new design state, and a list of 
conditions called domain assumptions that must hold for 
the transformation to apply (we do not discuss domain 
assumptions in this paper). We will represent the pattern 
and result of transformations as Prolog-like clauses. 

Transformations are applied interactively. The human 
designer selects a transformation to apply, and matches the 
paaem of the transformation to components of the current 
design state. The system then generates a new design state 
incorporating the result of the transformation. 

In design by problem decomposition. most of the trans- 
formations applied are of the following form: 
pattern: consrraint(C). 
result: constraint(C1 & .... & C,,). 

C in the pattean is a constraint. The transformation gen- 
erates a new state where C is replaced by a new constraint 
C1& ... & C, that entails C. This in turn may be decom- 
posed into subconstraints. 

When the designer judges that the constraints have been 
decomposed into sufficiently simple subconstraints. she 
assigns responsibility for each of the . - yonstraints to a 
single agent. As described above. assi+r.i.;g responsibility 
for a constraint C to an agent requires mat agent to limit its 

actions so that C is met, regardless of the actions of 01:- L; 

agents in the system. 
Finally, the designer applies transformations to unfold 

the assigned constraints onto the preconditions of actions 
in the system portion. The designer may also have to use 
low-level design editing transformations to change the 
details of actions and relations in the system. 
Our main interest is in the transformations for decom- 

position of constraints and assignment of responsibility. 
As an example, one class of decomposition transformation 
used in this paper is Zone Defense. Intuitively, Zone 
Defense decomposes a constraint by 
1. Selecting an object. 
2. Dividing the object’s lifetime into “zones”, and 
3. Splitting the con:‘: “:; into subconstraints based on the 

“zone” the objecr 
More formally, gi-. lonstraint C and a universally 

quantified variable v . .ve decompose C into subcon- 
straints based on poss :ates of objects to which v can 
be bound. The applicx . . .)f Zone Defense to the Never- 
Further constraint of the ,ievator problem is as follows: 
pattern: constraint(NeverFurther), uv(p, NeverFurther). 
result: constraint( (PI) 

3f enter@,, 0 3 NeverFurther[p/pl] 
& 
3fl. f2 move(fl, f2) * NeverFurther[p/pl] 
& 
3f exit(p1, f )  * NeverFurther[p/pl] 
& 
(3f enter(p1,O v 3f1, f2 move(f1, f2) 
v 3f exit@,, f )  )). 

Intuitively, to ensure that passengers never move further 
from thcir destination, we can ensure that the con:traint 
holds .a. -izn the passenger enters an elevator, when 2 2  :IC- 
vator r:.:*xs, and when the passenger exits the eleva~r.  

Having broken NeverFurther into more manageztliz 
subconstraints. the designer can next assign responsihiii ty 
for one of the subgoals to the elevator. The only action the 
elevator controls are “move” and “wait”, so we separate 
these subconstraints of the decomposition, and assign 
them to the elevator with the Limit Each Action transfor- 
mation. The instantiation of this transformation on the 
move action reads as follows: 
pattern: consuaint((pl) 

3f1, f2 move(f1, f2) 3 NeverFurther[p/pl] 
agent(e1evator)). 

result: constraint(@,) 
responsible(c 1. 
3f1, f2 move(f1, f2) NeverFurther[p/pll), 
age:': .devator)). 

This tr:- .mnation requires that the elevator control each 
move ai ‘1 so that NeverFurther holds, regardless of thc 
actions t : i  ihe passengers. Unfortunately, thcre is no way 
for both NeverFurther and NoDelays to be met if Never- 

88 



Further is assigned to the elevator as shown here. Two pas- 
sengers going in different directions can enter the elevator 
and leave the elevator no choice but to either violate Nev- 
erFunher or NoDelays. We discuss this example further 
below. 

Detecting solution states 
A solution state in Critter’s search is a design state where 
the system portion does not generate any behaviors which 
violate the constraints in the constraint portion. Critter 
includes analysis tools to help the analyst identify solution 
states. In Fickas and Helm, 19921. we discuss several of 
these analysis tools and trade-offs between them. In this 
paper, we will discuss mainly the OPIE planning tool 
[Anderson and Fickas, 19891. The system portion of a 
design state is effectively a planning domain. OPIE is a 
planner which shows that a design state is a solution 
by producing a plan incorporating actions from the system 
portion for violating one or more constraints. We refer to 
such a plan as a failure scenario. 

For example, to show that the initial elevator design 
state in Figure 3 is not a solution state, OPIE can generate 
a plan for violating the NeverFurther constraint from an 
initial point supplied by the analyst (+ indicates a relation 
added, - indicates a relation deleted): 
Initial. On@, I), At(l), D@, 2); 
1. enter@, 1): -On@, 1) +In@); 
2. move( 1,3): -At( 1) + At(3); 

>>Violation of NeverFurther cc 

At(1) & In@) & D@, 2) & +At(3) 
d~~Between(l.3.2) 

This illustrates the general style of solution testing in Crit- 
ter, we focus on identifying classes of behaviors or scenar- 
ios which violate the constraints, rather than verifying that 
the constraints are met. In the next section, we discuss 
some of the benefits of this approach. We also identify 
some of its limitations, and suggest how to address those 
limitations in design by decomposition. 

Critiquing with failure scenarios 
Critiquing composite system design states by failure sce- 
narios offers two benefits for design: 
1. Diagnosis. A scenario is a specific behavior of the sys- 

tem which violates a constraint. The designer can use 
this behavior to diagnose the problems of the current 
design state and identify potential solutions. 

2. Validation. The system portion of a design state is 
effectively a model of what is possible in the design 
domain. If a scenario generated from that model is 

counterintuitive or unlikely in the domain, this is a h in t  
that the model is too weak. 

Our goal is to gain these benefits for design by problem 
decomposition. In this section, we suggest an approach to 
critiquing problem decompositions, and demonstrate the 
approach by showing how it could reproduce steps taken 
in a published composite system design derivation. 

Synthesizing an approach 
Planning over the system portion is not necessarily the 
best way to generate failure scenarios for decompositions, 
or for composite system designs in general. The planner 
cannot tell how likely, or how important a failure scenario 
it generates is. Consequently, it generates many scenarios 
with marginal value for design. More seriously, a designer 
can miss important failure scenarios in a design problem 
by “naive specification” of the problem. The planner relies 
entirely on the information in the design state to generate 
critiques. This knowledge may be incomplete or incorrect 
with respect to the design domain. The designer can 
exclude a particular failure, even a common one, by not 
including actions in the system portion which allow the 
planner to generate that failure. For example, the designer 
of a library can miss the possibility of books being stolen, 
by not encoding a “steal book” action in the initial design 
State. 

A critic with domain knowledge can focus more quickly 
on serious problems, and can recognize problems even in 
naive specifications. We describe a domain-specific critic 
called SKATE for library design in [Fickas and Nagarajan, 
19881. SKATE has a case base of 1) library designs, 2) 
constraints they meet or violate, and 3) failure scenarios 
for those designs. Given a proposed design and a set of 
constraints, SKATE retrieves designs from its case base 
that match features of the proposed design, and that vio- 
late the proposed constraints. It then runs failure scenarios 
from the retrieved designs to demonstrate the problems. 
Given a library design including unrestricted checkout of 
books, for instance, and a constraint “users have a large 
selection of books to choose from”, SKATE retrieves a 
design case with unrestricted checkout. It then executes a 
stored failure scenario of a “run” on the library, in which 
unresmcted checkout is used to strip the shelves bare. 

SKATE’S case base points i t  directly to well-known 
library failure scenarios, avoiding the problem of generat- 
ing marginally useful scenarios. SKATE also avoids the 
problem of naive specifications. The failure scenarios 
SKATE generates are not restricted to using the actions 
and relations specified in the proposed library design. 
They can also include “environment” actions such stealing 
or destroying books, which a designer might not specify 
but which are known to cause problems in  the library 
domain. 

89 



SKATE, however, suffers from a limited ability to 
match designs against cases. In general, it is hard to match 
the features of one arbitrary specification to another [Rob- 
inson, 19901. SKATE requires the user to manually map 
features of the proposed library design into features used 
in SKATE’S case base. This task is onerous and error- 
prone; important critiques can be missed by user mistakes 
in the mapping process. 

One solution proposed by Fickas and Nagarajan is to 
integrate matching more closely with the process of pro- 
ducing designs. They suggested that the proposed design 
be generated by domain-specific editor. equipped with a 
collection of library components appearing in the case 
base. In effect, this limits the designer to producing 
designs SKATE knows how to critique. 

Based on these considerations, we propose the follow- 
ing approach which integrates the approaches of OPIE and 
SKATE 
1. We will use Critter’s transformation library in place of 

the case base of SKATE. Each decomposition transfor- 
mation has an attached set of failure scenarios repre- 
senting its typical defects. Critter thus plays the role of 
the domain-specific editor proposed by Fickas and 
Nagarajan. 

2. Critter matches failure scenarios when it applies a 
. transformation. Matching is simpler, compared to 

SKATE, because the instantiation of the transformation 
itself guides the matching process. 

3. Critter critiques a design state using the OPE planner. 
OPIE produces plans by specializing and refining pre- 
viously matched failure scenarios. 

This approach addresses the problem of marginally useful 
scenarios by storing a library of typically useful scenarios 
on transformations, and using these scenarios to focus the 
planner. Our study of failures in multi-agent systems Pic- 
kas, Feather, & Helm, 19911 suggests that we can find 
such characteristic failure scenarios for problem decompo- 
sitions. The approach also addresses the naive modelling 
problem by allowing failure scenarios to introduce new 
relations and actions into the design state being critiqued. 
As in SKATE, these “environment” components represent 
knowledge of well-known problems that crop up in multi- 
agent systems. 

To illustrate this approach. we next show how critiques 
generated this way could anticipate two design steps 
which occurred in the composite system design develop- 
ment described in [Feather, 19871. 

Focusing on a decomposition failure 
Recall that Feather’s elevator design problem had two ini- 
tial constraints: 
1. Passengers should never move further from their desti- 

nation (NeverFurther). 

2. Passengers should not be unnecessarily delayed 

From the constraint that passengers never move further 
from their destination, the designer in Feather’s example 
“chooses the implication” that passengers in the same ele- 
vator must be travelling in the same direction. We show 
how a failure scenario can focus the planner to reproduce 
this design step. 

Earlier we showed a development step which assigned 
the NeverFurther goal to the elevator. This step used a 
transformation called Limit Each Action. As noted above, 
this assignment requires the elevator to satisfy NeverFur- 
ther for all combinations of passengers and floors, regard- 
less of prior actions of the passengers involved. Critter can 
generate an interesting counterexample to this constraint 
using a scenario attached to the Limit Each Action trans- 
formation. The attackd scenario is called “incompatibility 
Conspiracy”. The abstract incompatibility conspiracy sce- 
nario requires that: 
1. There are two agents in the system portion whose state 

can affect the truth of the constraint assigned by the 
transformation. 

2. These two agents can act to reach a state S where an 
application of the action A will fail to satisfy the con- 
straint for either one agent, or for the other. For the 
assigned constraint C and limited action A, we can 
compute the conditions on the state S the conspiring 
agents must reach. Specifically, we regress 3a1, a2 -, 
(C[all & C[a21) through the action A. 

Instantiating the scenario on the application of Limit Each 
Action, we get a goal of generating a state where: 

There are two passengers in an elevator on a floor f l  
The two passengers have destinations f3, f4 
No floor f2 exists such that Between(f,, fi. f3) & 
Between(fl, f2. f4) 

It remains for the planner, OPIE, to ny to extend this min- 
imal “scenario” into a plan. This requires a considerable 
effort on OPIE’s part. If such a plan can be found, how- 
ever, it provides a motivation for the requirement that pas- 
sengers only enter the elevator with compatible passengers 
-- passengers travelling in the same direction. 

Using an abstract failure scenario thus allowed the plan- 
ner to recognize a critical deficiency, one which Feather 
deduced informally in his example. 

Critiquing a naive communication model 
In another step of Feather’s development of the elevator 
problem, passengers have been assigned to enter the ele- 
vator when a suitable one anives at the passenger’s floor. 
The elevator has been assigned to take passengers to their 
destination when they enter. From this, the designer in 
Feather’s example derives the constraint that the passen- 
gers communicate their presence on entering the elevator. 
We show how an abstraci failure scenario could lead a 

(NoDelays). 

90 



designer to this communication protocol. by introducing 
environment actions and relations which cause a stereo- 
typical breakdown of communication. 

The starting point for this development is the NoDelays 
goal, which requires that the elevator must either move or 
load and unload passengers when any passenger is 
present. The designer applies a macro-transformation 
called Sequenriul Spiir to the NoDelays goal. This trans- 
formation combines a Zone Defense operator with respon- 
sibility assignment. It subdivides the task of moving 
passengers into sequential zones, based on the status of the 
passenger. In particular, the designer uses Sequential Split 
to make passengers responsible for Noklays when the 
elevator arrives at a floor. Responsibility passes sequen- 
tially to the elevator once the passenger enters. The instan- 
tiated version of Sequential Split expresses this formally: 
pattern: constraint( 

On@, f )  & At(f) * NoDelays), 
agent@), agent(e1evator). 

On@, f )  & At(e, f )  = Responsible@, enter(p, 0) 
& 

Responsible(e1evator. 3 f2 move(fl. f2)) ))) 
agent@), agenqelevator). 

result: constraint( 

(In@) & At(f1) =3 

Note that the requirement that the elevator moves, coupled 
with the NeverFunher consrraint. ensures that the passen- 
ger will eventually arrive at its destination. 
Our studies of transportation system failures suggest 

that sequential decompositions. while common. frequently 
fail due to “hand-off errors”. In one hand-off failure sce- 
nario, for instance, the agent responsible for the second 
half of a sequential decomposition fails to pick up where 
the first agent leaves off, because it does not recognize it 
has become responsible. Translating this to the current 
problem, the elevator may fail to move, because it does 
not recognize that the passenger has entered and thus 
handed off responsibility for NoDelays. 

This sequence of events is encoded as an abstract sce- 
nario attached to Sequent%l Split. Instantiated with the 
Sequential Split transformation above, it asks the planner 
to expand a sequence of states where: 
1. 3p. f On@, f )  & At(f); 
2. In@) & At(f) & 42levatorResponsibleForMove 
Note that the abstract scenario introduces a new binary 
relation ElevatorResponsibleForMove. This relation rep- 
resents the elevator’s internal model of the condition that 
activates its responsibilities. The failure scenario also 
introduces actions for asserting and deleting this relation. 
As with SKATE scenarios, abstract scenarios in Critter 
can add environment actions and relations to the design 
state for use in generating critiques. In this example, the 
new components allow OPIE to generate a plan in which a 
passenger enters the elevator, but the elevator does not 

- 

recognize this (ElevatorResponsibleForMove is false), and 
so does not move. 

Environment components introduced by attached sce- 
narios allow OPIE to avoid the naive modelling problem. 
They force the designer to consider behavior which is typ- 
ical for a class of problem decompositions, even if the 
designer has neglected to include components which sup- 
port such behavior in the initial design state. 

Returning to our example, the designer acknowledges 
the scenario, and designs a communication protocol to 
prevent it. The passenger becomes responsible for notify- 
ing the elevator when it enters the elevator. The elevator 
will acknowledge the handoff. This can be implemented 
by a familiar interface: passengers hit a button on entry to 
the elevator, and the button lights in response. 

The handoff failure scenario thus produces and rational- 
izes an interface component developed in  the Feather 
example. This step also shows how a failure scenarios 
incorporating environment components can expose naive 
assumptions about inter-agent communication, and lead to 
more realistic agent interfaces as a result. 

Conclusions and Issues 
We have proposed an approach to composite system 
design based on problem decomposition. To evaluate 
designs generated by the approach, we have proposed a 
method of scenario-based critiquing using compiled 
knowledge of typical failures of problem decompositions. 
Our method combines the approaches of earlier plan- 
based and case-based design critics we have developed. It 
addresses the problem of matching cases which stymied 
the case-based critic. It also helps solve the problems of 
unfocused search and naive modelling which were the 
principle drawbacks of the plan-based critic. 
There remain numerous open research issues for the 
approach. Two issues in particular may be of interest to 
this workshop. 

First, can we store scenarios on transformations which 
are specific enough to be more useful than simply running 
the planner? For example, the incompatibility conspiracy 
scenario was extremely general, and costly to instantiate. 
OPIE could possibly find the associated plan just as 
quickly by directly analyzing the design state. One rejoin- 
der is that the transformation associated with the incom- 
patibility conspiracy scenario, responsibility assignment, 
is too general to have useful scenarios associated with it. 
Increasing the grain size of transformations, and placing 
scenarios only on the large-grained transformations, might 
give better results on evaluation. but at a cost of increasing 
the size of Critter’s transformations and complicating their 
application. The research issue: how can we evaluate the 
trade-off between more effective evaluation knowledge, 
versus more general problem decomposition methods? 

91 



Related to the issue of transformation versus scenario 
grain size is the question of combining multiple failure 
scenarios. For example, consider the step which split the 
NoDelays goal. In that step, we applied Sequential Split, 
which combined three smaller transformations (Zone 
Defense and two responsibility assignments). The result 
was tested by scenarios stored on Sequential Split. Sup- 
pose instead we had applied the three primitive transfor- 
mations. How should we merge the separate stored failure 
scenarios into a combined scenario; or. alternatively. how 
can we decide which of the scenarios is the most important 
to run? 

Related Work 
Our work extends and formalizes that of Feather [1987]. 
who proposed the concept of responsibility assignment 
and informally demonstrated a development methodology 
based on decomposition and assignment of constraints. 
[Dubois, 19901 developed a constraint formalism, and a 
development methodology incorporating responsibility 
assignment, which has influenced our own work. 

The decomposition design process can be viewed as a 
multi-agent extension of “operationalization” [Mostow. 
19831. Mostow’s FOO and BAR systems designed prob- 
lem-solving programs by decomposing and weakening 
consmints until they were expressible in terms of easily 
computable functions. The problem-solving systems we 
are designing, however, incorporate a broad range of 
social, hardware, and software systems. Consequently, it is 
difficult to state a compact operationality criterion for a 
given design problem. We rely on the human analyst to 
judge operationality. Similarly, constraint violations in our 
design problems may have consequences ranging from 
trivial to life-threatening. Weakening and approximating 
constraints therefore is much more problematic; we do not 
attempt to address it with our current research. 

[Steier and Kant, 1983 argue for the importance of exe- 
cution in designing algorithms. Our style of critiquing is 
motivated by similar considerations. The approach we 
propose grows out of our previous work on case-based 
[Fickas and Nagarajan, 19881 and planner-based [Ander- 
son and Fickas, 19891 critics. [Dubois and Hagelstein. 
19881 propose a slightly different approach to critiquing: 
derive implications by forward inference over the con- 
straints, and present them to the user for validation. A 
critic using this approach requires knowledge to decide 
which deductions to make: abstract failure scenarios pro- 
vide our method with this guidance. 

Critter’s critiquing task is similar to that of failure crit- 
ics in planning systems such as CHEF [Hammond, 
19891.The failure critics of CHEF attempt to steer CHEF’S 
planner away from two types of failures: 

1. Planning failures. These occur when the planner gener- 
ates a plan that does not meet its goals, due to a false 
move by the part of the planner e. g. misordering two 
interacting steps. 

2. Expectation failures. These occur when the planner 
generates a plan which does not meet its goal when 
executed in the environment of interest. Expectation 
failures arise when the planner’s knowledge of its 
domain is incomplete or incorrect. 

CHEF includes mechanisms for learning new failure crit- 
ics from past planning or expectation failures. I t  also auto- 
matically indexes failures to planning moves that avoid 
those failures, and to moves which repair those failures. 

In Critter, the “planner” is the user, and the “planning 
moves” are the transformations in  Critter’s library. The 
failure scenarios on a transformation identify both plan- 
ning failures and expectation failures which could arise 
from using that transformation. 

Critter does not, however, automatically learn failure 
scenarios from failures when they are encountered, due to 
the generality of its transformation library. CHEF was 
designed to operate within a fairly specific task domain 
(its example domain was Szechuan cooking). Conse- 
quently, it did not have to be too “finicky” in its choice of 
failures to learn [Minton. 19901. In contrast. we hope to 
reuse Critter’s knowledge base across diverse domains, 
such as transportation systems, network applications, and 
resource management systems. This makes it more diffi- 
cult to automatically decide whether a given failure sce- 
nario is worth storing, and at what level of abstraction it 
should be stored. Our initial focus is thus on automated 
reuse of handpicked failure scenarios; learning the scenar- 
ios from previous design effort is 3 topic for future work. 

?!milarly, Critter does not aliil matically index from 
faii ilres to avoidance or repa:r :ransformations. The 
“plans” (formal specifications) that Critter produces are 
allowed to contain more complex operators - -  iterative, 
conditional, and uninstantiated operators, for example -- 
than the plans of CHEF. This makes it harder to explain a 
failure, assign blame for the failure to specification com- 
ponents, and index through those components to relevant 
transformations. For the present. we rely on the designer 
to perform indexing. but view it as an important area for 
future research. 

References 
[Anderson and Fickas, 19891 J. S. Anderson and S .  Fickas, 

“A proposed perspective shift: viewing specification 
design as a planning problem,” in Proc. 5th Interna- 
tional Workrhop on Software Specifreation and Design 
(Pittsburgh. PA, USA). Los Alamitos, CA: IEEE Com- 
puter Society, 1989, p. p. 177- 184. 

92 



[Conklin and Begeman. 19881 J. Conklin and M. Bege- 
man, “gIBIS: a hypertext tool for exploratory policy dis- 
cussion,” ACM Trans. Ofice I$ormation Systems, Vol. 
6, No.4, p. p. 303-331. October 1988. 

elaboration of requirements for multi-agent systems,” in 
Proceedings: International Conference on Cooperating 
Knowledge-bused Systems (Keele, UK). 1990. Springer- 
Verlag: 1990, p. p. 130-134. 

stein, “A logic of action for goal-oriented elaboration of 
requirements.” in Proc. 5th International Workshop on 
Sofwure Specjfication and Design (Pittsburgh, PA). 
Published as ACM SIGSOFT Engineering Notes, Vol. 

[Feather, 19871 M. S. Feather, “Language support for the 
specification and development of composite systems,” 
ACM Trans. Programming Languages and Systems, Vol. 
9, No. 2, p. p. 198-234, November 1987. 

[Feather, Fickas, and Helm, 19911 M.S. Feather, S. Fickas. 
and B. R. Helm,.“Composite system design: the good 
news and the bad news,” in Proc. Fourth Annual KBSE 
Conference Syracuse, NY. October 1991. 

[Fickas and Helm, 19921 S. Fickas, B. R. Helm, “Knowl- 
edge representation and reasoning for the design of 
composite systems,” IEEE Trunractions on Software 
Engineering. Vol. 18, No. 6, June 1992, to appear. 

[Fickas, Fearher, & Helm, 19911 S. Fickas. B. R. Helm, 
and M. S. Feather, “When things go wrong: predicting 
failure in multi-agent systems,” Dept. of Comp. and 
Info. Sci.. Univ. of Oregon, Tech. Report CIS-TR-91-15. 
1991 m n t e d  at the Niagara Workshop on Intelligent 
Information Systems, Niagara, NY, July 1991). 

“Being suspicious: critiquing problem specifications.” 
in Proceedings: AAAI-88 The Seventh National Confer- 
ence on Artifreid Intelligence (St. Paul, Mnn), 1988. 

[Hammond, 19891 K. J. Hammond. Case-Eased Planning: 

[Dubois, 19901 E. Dubois, “Supponing an incremental 

[Dubois and Hagelstein, 19881 E. Dubois and J. Hagel- 

14, NO. 3, p. p. 160-168. May 1988. 

[Fickas and Nagarajan, 19881 S. Fickas, P. Nagarajan, 

AAAI Pres, 1988, p. p. 19-24. 

Viewing Pfmning os a Memory Task. Boston, MA: 
Academic Res, Inc., 1989. 

[Johnson and Feather, 19911 W. L. Johnson. M. S. Feather, 
“Using evolution transformations to consmct specifica- 
tions”, in M. Lowry and R. McCartney (eds.), Automt -  
ing Sofhvare Design. AAAI Press. 1991. 

[Minton, 19901 S. Minton, “Quantitative results concern- 
ing the utility of explanation-based learning,” Artificial 
Intelligence, Vol. 42, p. p. 363-392. Also in J. W. Shav- 
lik and T. G. Dietterich (eds.), Readings in Machine 

Learning. San Mateo, CA: Morgan Kaufmann, 1990, p. 

Mostow, 19831 J. Mostow, “A problem solver for making 
advice operational.” in Proceedings: AAAl -83. Morgan 
Kaufman, 1983, p. p. 279-283. 

[Robinson. 19901 W. Robinson, “A multi-agent view of 
requirements,” in Proc. 12th International Conference 
on Software Engineering (Nice, France), 1990, p. p. 

[Steier and Kant, 19851 D. Steier. E. Kant, “The roles of 
execution and analysis in algorithm design,” IEEE 
Transactions on Software Engineering, Vol. 11, No. 11, 
Nov. 1985. 

Wilbur-Ham. 19851 M. C. Wilbur-Ham, “Numerical petri 
nets -- a guide”, Telecom Australia Research Laborato- 
ries, Report 7791,1985. 

p. 573-587. 

268-276. 

9 3  



Hodgsoi 

Learning Impasses in Problem Solving 
J.P.E. Hodgson 

Center For Machine Learning 
Department of Mathematics and Computer Science 

St. Joseph’s University 
Philadelphia. PA 19131 

jhodgsonOsju.edu 

Abstract 
Problem Solving system customarily use back- 
tracking to deal with obstacles that they en- 
counter in the course of trying to solve a problem. 
This paper outlines an approach in which the p o r  
sible obstacles are investigated prior to the search 
for a solution. Thir provides a solution strategy 
that avoids backtracking. 

Introduction 
Many weak methods of problem rolving u e  bared upon 
the idea that a problem can be aolved by choosing a 
sequence of go& and ratiafying them in norm otder. 
GPS (Newell and Simon 1972) WM amongnt the first 
to set out this approach. Since then the work of E m t  
and Goldstein (Ernrt and Goldstein 1982), Korf (Korf 
1985), and Guvernir (Guvernir 1987) haa built upon 
this idea. The culmination of thm kind of approach in, 
in some ways, the Soar system, which through the 
creation of a large production syrtem with learning 
capabilities is able to incorporate many of the weak 
problem solving system into a ringle rystem. 

If one compares Soar and Korf’s syrtem they take 
quite distinct approachea to the problem of what 
should be learned and when it rhould be learned. 
Korf’s system is able to specify in advance exactly 
what macros it needs to learn. Thio will yield bene- 
fits in the system’s ability to determine which macro 
to use at a given point in the rolution, at the price 
of requiring long searches tor iome of the more c o n  
plex macros. Soar on the other hand leunr only the 
solutions to the difficultia that actually &. Thir 
conservative attitude toward l d g  meanr that the 
system can encounter problem in matching expenrive 
chunks that do not arise in Korf’r iituation. 

This paper lookn for a half way house between thew 
two strategiea. We would like to obtain the benefitr 
of easier pattern matching afforded by Korf’r rystem 
without having to pay the price of the large amount 
of search that his system needs. Our approach in to 
show that for a substantial number of problem one can 
anticipate the impasses that will be encountered by a 
problem solver. These can then be modeled and solved 

in small pieces of the larger problem, thus avoiding the 
deep rearcher required in Korf. 

Prct4ems, Strategies and Impasses 
We rev . bridy the ddinitionr that we will need. A 
conrens ._ aa to the appropriate definitions seems to be 
emerging (Banerji 1983), (Benjamin et al. 1989), and 
(Niiruma and Kitahahi 1985). Our definitions follow 
thir trend. Some of them have appeared previously in 
(Hodgoon 1989). 

Problem and Subproblems 
Our definition of a problem is bawd upon the idea of 
an action. 
DcAnition 1 A h e  problem P u a triple (S,n,a) 
where a u a partial map 

a : S x f I + S  
The ret S in called the state space of the problem 

and the set S l  in the move set of the problem. The  
map a represents the effect of the moves on the state 
space. The effect of a move w on the state s is to give 
the atate O(r,w) .  The element o ( s , w )  fails to exist 
precisely when ( 8 , ~ )  ir not in the domain of a; that is 
when w cannot be applied to the state s. A sequence 
C = ( ~ 1 , .  . . , w y )  of moves on P is called admissible at 
r if the compolition 

exink. 

Definition 2 Given two probkmr PI = ( S I , ~ I , ~ I )  
and fi  = (Sa,SZ~,ua), with a pair of maps f : S1 + 

Sa and g : fI1 + 523 The pair (Jy) defines a strict 
homomorphirm F : Pl - Pa provided that 
1. Given two poinb $1 and 13 such that f(q) = f(sz), 

then if the move w applier to $1 it abo appplies t o  
$2 and 

a(#, E) = a(.(. . (8 ,  Wl), w a ) .  . . 8 uk). . .) 

We need a notion of maps between problems. 

1. The equation 

f(.l(.,.)) = oa(f(s),o(u)) 
u ratufica in the rcwc that whenever the right-hand 
ride e t u b  SO doer the left-hand side. 

94 



A strict homomorphum F w a monomorphirm if 
the underlying map8 f and g are one to one. 

We now turn to the notion of (strict) isomorphism. 
Definition 3 Two problem PI and Pa are strictly 
isomorphic if there e t u k  a pair of mutually inuerre 
strict homomorphirm F : PI =+ Pa and E : Pa + PI 
between them. 

We can use monomorphism in a natural way to d e  
fine subproblem. 
Definition 4 Let P = (S, n, a) be a probkm. A prob- 
lem PO = (So,no,a~) u a (strict) rubproblem o f P  
if there ezbk a problem monomorphum (f,g) = F : 
Po =+ P. 

It is worth noting that the requirement that the un- 
derlying state map be a monomorphism has the ef- 
fect that even the weaker definition8 of homomorphism 
such as the weak homomorphism of Niizuma and Kit+ 
hashi (Niizuma and Kitahanhi 1985) lead to the name 
subproblems. 

As an example of the concepts developed here we can 
take the sliding tile purzles. In particular we might 
take the fifteen puzzle. The rtate rpace io then the 
set of all legal arrangements of the fifteen tiles and 
the blank in the 4 x 4 array. The move wt can be 
given by the set n = (Uy D, L, R} where the letter 
indicates the direction in which a tile is moved. A 
typical subproblem can be obtained by restricting one’s 
attention to the tiler in the top half, (aaruming that the 
blank lies in the top half). Mover on thin rubproblem 
are restricted to be thoK in which the blank re& 
in the top half of the array. 

Strategies 
So far we have not recognized that problem are s u p  
posed to represent thingr that are to be solved. To do 
this we define a problem instance for a problem P 
as a triple (P, Q, G) where u ir a state of P called the 
start state, and G is a rubset of the rtate rpace called 
the goal set. A solution to the problem instance is a 
sequence C of moves which is adminaible at u and ruch 
that a ( r , C )  E G. 

Informally a strategy io a rquence of intermediate 
subproblem instances between the initial rtate and the 
goal. We can distinguish two c l a u a  of strategies. In 
the first the succerrrive rtate rpacer overlap; we call 
these ample strategies. In the other the auccessive state 
spaces are disjoint; we call thew abutment rtrategier. 
Definition 5 An ample strategy for a problem in- 
stance (SI $2, a, u, G) b a requence (PO,.. . , Ph} of wb- 
problems of P = (S,n,a) wch b a t  ihe  rtate rpacer 
of successive subproblem have non-irivial interredion, 
that is Si-lnSi # 0 V i  E 1,. . . k. Furthennore u E So 
and G S b .  

An abutment rtrategy for a problem inrtance u 
a sequence {Po,. . , , Ph) of aubpmblcmr of P w c h  that 

1. Q E so, 

2. G C Sh, 

4. for each i E 1, ... k there ezirk at least one pair  
( t i - 1 1 q )  of poinb of S such that there is a moue 
w E n for which a(q-1,w) = 2i. 

A rolutwn u baaed upon a rtrategy if it b obtained by 
concatenating a requence of rolutionr to the intemne- 
diate rubproblem. 

We illurtrate the two kindr of strategies with exam- 
ples. For our eurmple of an ample strategy we con- 
sider the case of Fool’s disk. This problem has been 
discusred by Ernst and Goldstein (Ernst and Goldstein 
1982). It consists of four concentric rings each of which 
is free to rotate about the common center. Each ring 
has eight numbers on it, appearing at 45 degree inter- 
v& around the ring. The goal of the problem is to 
rotate the rings 80 that the sum of each radius is 12. 
The standard strategy is aa follows: 
0 By wing only rotations through 45 degrees, make 

the sum on each pair of perpendicular diameters 48. 
PO thus haa the same state space as P but a smaller 
move ret. 

0 By wing only rotationr through 90 degrees, make 
the rum along each diameter 24. PI has as state 
apace a set of r t a tu  in which the sum on each pair 
of perpendicular diameters is 48. The move set is 
again a rubnet of the original one. 

0 By wing only rotations through 180 degrees make 
the sum along each radiur 12. Pa haa as state space 
a w t  of rtatcr in which the sum along each diameter 
ir 24 and once again the move set is a subset of the 
original. 
This rtrategy, when successful (about which more 

later), reducer the amount of search from 83 moves 
(the center ring can be kept fixed) to 8 x 3 moves. 

Our recond example is an elegant solution of the 
five purzle that han been presented by Banerji (Banerji 
1990). He observer that there is a way to represent the 
stater of the five puzrle by points on the faces of a 
dodecahedron. The requence of moves that circulates 
the blank around the the circumterence of the the puz- 
rle moves through all the states on one face. Passage 
from one face to another ir effected by the moves that 
slide the blank up and down in the centre column. The 
rtrategy in thio care consirts of choosing the sequence 
of facer (each of which L a subproblem) through which 
one must parr from the start to the goal. 

There is an important difference between these two 
examplea. In the second example once the strategy is 
choaen no backtracking over the solutions to the inter- 
mediate problem is necessary but in the case of the 
fool’s dirk it may be necessary to backtrack since it is 
possible that the fint arrangement in which the sum 
on all the diameterr is 24 may not lead to a solution 
and another arrangement is needed. Niizuma and Ki- 

3. Si-lnSi=OViE l,...k, 

95  



tahashi (Niizuma and Kitahashi 1985) give a sufficient 
condition for this not to occur. 

Proposition 6 Suppore that for each rubproblem oc- 
curring in a strategy it U the case that any inrtance 
of the subproblem can be rolued then no back tracking 
wall be needed to conrtruct a rolution to the original 
problem following t h e  strategy. 

It may seem that the restriction on the rtate rpaca 
of the intermediate problem ia unduly restrictive. Yet 
it is exactly thi that ia needed to  avoid backtrackiing. 
Thus one aim of our approach ia to find strategia for 
which this hypothesis in true. 

Impasses 
At any stage in the execution of the strategy one haa 
a subproblem inetance (Pi, cli, ai, ui, Gi) where in the 
case of an ample strategy Gi ia Si n Si+l or in the caae 
of an abutment strategy Gi ia the net of pointr oi Si 
from which a move to Si+l ia ponnible. We have seen 
that the strategy proceedr smoothly aa long an therc 
intermediate problem can be solved. 
Definition 7 An intermediate probkm for which 
there is no solution u calkd an impasse for the d r a t  
egy. 

This terminology follows one case of the uae of the 
term in the Soar system, in so doing we are also fol- 
lowing the usage of Ruby in (Ruby and Kibler 1989). 

It is important to note that our definition of an im- 
passe in a problem in dependent upon the strategy ch* 
sen to solve the problem. Thua in the Banerji solution 
to the five p u s h  there are no impaanes since each in- 
termediate goal ia attainable. By contraat in the more 
usual method in which the tiler are brought into posi- 
tion in a prearranged order there are impanes. 

Learning the Impasses 
Our approach to finding impamelas strategier u to i n  
prove an exiating strategy by modifying the subprob 
lems so that they do not contain any impama. AE an 
example we show that in the we of Fool’r diak we can 
do this by enlarging the intermediate problem. Thia 
need not always be the case an we rhall see in rome of 
the examples that we diacuas. 

For the Fools’ dirk case we can comider the inter- 
mediate problem defined s~ follows: 

By using only rotationr through 45 degrees, make 
the sum on each pair of perpendicular diameterr 48. 
Po thus has the same state space M P but a smaller 
move set. 

Let Pl have as state space the net of all d a t a  in 
which the sum on each pair of perpendiculat diam 
eters is 48. The move wt  ia again a sub& of the 
original one. It may contain some mova through 45 
degrees. 

Let Pi have as state space the set of all states in 
which the sum along each diameter is 24. The move 
net may contain moves through 90 or even 45 de- 
grees. 

It ia clear that for these problems no backtracking 
into earlier problem in necessary. 

Finding the Impasses 
Problem solvern such as Soar (Laird et al. 1986) and 
the rtepping stone method (Ruby 1989) find the im- 
parra in the course of attempting to satisfy the cur- 
rent goal. A search procedure ia then invoked to resolve 
the impanne and the resolution of the impasse become 
part of the problem solver’s knowledge about the prob- 
lem. Thir ia an accurate representation of much human 
prr - ern solving, but it doer not tell the whole story. 
0’ faced with a problem a human will actively con- 
sit -.e difficultier that may arise in the course of the 
re .on of the problem to see if they can be solved. 
0 ivantage of such an approach offers is that it 
&. 5 m e  to take advantage of efficient storage tech- 
niqucr once one has determined that a small group of 
chuntr will be adequate to solve the problem. This 
addreanen in rome measure the problem of expensive 
chunks (Tambe et al. 1990). 
W e  give here a recognition criterion that forms the 

basin for an algorithm that can be used to produce 
impauer in problem. The criterion will be stated for 
the caner where the strategy is based upon the idea 
of reducing e ret of features to their goal values. We 
begin by formaliring thia notion. 

Given a problem P a feature on P is a map 

f : s + T ( f )  

between the state space of P and some finite set T( f )  
called he target of of the feature. A set 3 of features 
ia called dircriminating if given any two state SO and 
$1 of P there ia some feature f E T such that f ( s g  # 
f ($1). The set is called adequate for a goal G if given 
any state s which in not a goal state there is some 
feature f such that f ( s )  is not a member o f f  (G). 

The strategy amociated to an ordering { f1, . . . , f k }  
of a set of adequate featura in the sequence of subprob- 
l e m  Pi = (Si, n,ai,ui, Si+l) where Si is the set of all 
rtates for which the featura f1,. . . , fi-1 have goal val- 
uer, in the ratriction of a to a-’Si n (Si x $2). For 
these strategia we can give a recognition criterion for 
imprurC8. 

Proposition 8 Jet Pi = (Si, l2, tq, oil S;+l) be an tn- 
temediate probkm for a rtrategy based upon an ade- 
quate ret of featunr, then Pi ir an impasse instance tf 
either 

e No move changing the value of fi applies t o  Q,, or 
e Any requence of moue8 on P that reduces f, from u, 

mud change the value of at least one of f l ,  . . . f,-1. 

96 



From this point forward the argument goes as fol- 
lows. First, find an impme. Second, produce a 
"smaller" example of the same impasse. Thirdly, ex- 
pand the example to a subproblem in which the im- 
passe can be resolved. Finally, show that the problem 
has a strategy baaed upon the new set of subproblem. 

Examples of Impasses 
To obtain an impasse of the first kmd we can turn to 
Sussman's anomaly in the bloch world. The impaaw 
can be succinctly described by the following figure. 

Sussman'a Anomaly 
Although one can get "cloaer" to the goal by putting 

B on top of C in the poaition on the left hand side it 
will be necessary to undo thi since the goal of putting 
A on B requires that the top of A be clear. Thua no 
move that will achieve the desired position for A in 
available. 

To get an example of the second kind we con- 
sider the fifteen purrle with the initial strategy 
of moving the tilw into position in the order 
1,2,3,4,5,8,7,8,9,13,10,14,11,12,15 (the ordering 
at the end is chosen to be a good one, we do not need 
to-go this far though). 

1 1 5 1 6 1  1 4 1  

A Fifteen Purrle Position 

In the diagram above we find an impsue when we 
come to try and locate tile 4. The smalleat subprob 
lem in which this impasse appears ia the 2 x 2 u p  
per right hand corner in the diagram where which 
we place 3,5,4, blank reading clockwhe from the top 
right. (The choice of 5 i not significant.) Thh can 
be solved in the five purrle that ia obtained when we 
restrict attention to the top two rowa and rightmat 
three columns of the purrle. Furthermore we can cover 
the state space of the fifteen purrle with copier of the 
five puzzle in the way that will be detailed in the n u t  
section and obtain an irnpaoac free atrategy. 

In fact the recognition criterion given in proposition 
8 permits one to write a simple program that will gen- 
erate impasses in both these cases. Furthermore the 
expanaion of the subproblem described in the example 
of the sliding tile purrle will provide the means for re- 
solving the impwes. T h i  i the subject of the next 
section. 

Atlases: Solving the problem 
In thia section we will describe a modifled version of 
the notion of a strategy. In some sense it is a meta- 
strategy in that it is designed to produce an impasse 
free strategy for a problem by choosing the sequence 
of subproblem from a set of subproblems whose image 
cover the whole of the state space. The basic idea is 
that one determines what impasses may arise in t h e  
problem and then expands them to subproblems tha t  
resolve the impasses. These impasse resolving prob- 
l e m  are then used to cover the state space of the prob- 
lem giving rise to a new strategy. 

Charts 
It ia convenient to introduce two auxiliary notions. 
Thwe are chart and atlas. The idea is that chart are 
piecea of a problem that are all modeled on some com- 
mon subproblem. The important charts will be the 
ones that contain the resolutions of impasses. 
Definition 9 Let P be a problem and s a state in P .  
Then a chart for P baaed upon a problem Po is a prob-  
lem monomotphirm Po -+ P whose image contains s. 

An atlaa for a problem P is a finite collection A of 
charta auch that every point in the state space of P is 
in the image of mme chart of A. 
We define the images of two charts f 1  : PI -+ P and 

f a  : Pa -+ P to be incident if either 
I. fl(P1) n fa(P2) contains at least one move common 

to both subproblems, or 
2. there exists a state slcfl(P1) and a state slef~(P2) 

such that there is a reversible move w with a( sl, w )  = 
81 - 
The abr~ractionof a problem associated to an atlas is 

the graph whom vertices correspond to the embedded 
charta of the atlas with an edge between each pair of 
incident charta. A sequence of pairwise adjacent charts 
is called a chain 
We will want to distinguish between two types of 

abrtraction. An abstraction in which the charts over- 
lap will be called an ample atlas. One in which all the  
charta are incident but do not overlap will be called an 
abutment atlas. 
We give two examples of abstractions associated to 

au atlan. The first is based upon the earlier solution of 
the five purrle. Here the charta consist of the images of 
the subproblem of the five puzzle consisting of those 
states that are obtainable by moving the blank around 
the circumference of the puzzle. As Banerji remarks 

9 7  



(Banerji 1990) thin reprcacntr the accesrible states of 
the five puzzle on the facer of a dodecahedron. The 
faces of this are the point8 of the aktraction and the 
edges (which correspond to the move of the blank up or 
down in the middle column) correspond to the edger. 

We can obtain an abstraction of the blockr world 
by “welding together“ adjacent bloch so that we have 
only three big bloch to consider. Each big block in 
itself a blocks world and the three block world already 
contains the generating example of the impeue. 

These two exampler suggert that the correct choice 
of an  atlas will allow one to give an impasre free atrat- 
egy. 

The Atlas Meta-strategy 
Atlases serve as abrtractiom of a problem. Given a 
problem instance and an atlas on a problem we can 
define a problem instance on the atlas. -he problem 
is to find a chain joining a chart contaiii.ng the start 
position to a chart whome image intermxcs the god. 
Definition 10 
Given an impasse I = (P~, fb , ,a ,ug ,Gg)  on a prob- 
[em, a chart f : PI + P is raid to resolve the impure 
if there i s  a monomorphism of PO into PI and if the 
instance I can be solved in PI. 

The main i d e a  of thir paper can be summed up in 
the following. 
Proposition 11 Let (PO,. . .Pk} be a rtrabgy for a 
problem P and let Z denote the ret of impure. for thir 
stmtegy. Let {Ql, . . . , Q,,} be a ret of ehartr of P rrch 
that each impasre u rerolved in at l e u t  one of the Qi. 
There i s  an atlas A bmed upon the charta Qi whose u- 
sociaied meta-strategy giver impuselerr rtrategies for 
P .  

The next section outlines a proof of thir rerult and to 
a result on the length of the solutiom that it producer. 

Solutions and Their Length 
The ideas required to comtruct the knpauelar rtrat- 
egy are outlined below. The details have been worked 
out for the sliding tile purrler, the Tower of Hanoi and 
the blocks world but in a manner that ir somewhat 
problem dependent. ELture work involves unifying the 
implementation so that it applies in a more problem 
independent way. 

Resolving the Impasses 
Let Pi = (S i ,Q,a i ,o i ,S i+l )  be an i m p =  arhing 
from the strategy baaed upon the w t  { f1,. . . , fk} of 
features on a problem P .  The followkg wquence of 
steps is used to resolve the impcure. 
SHRINK 

The goal of thm rtep ia to remove from conaideration 
those features that are not required to C O M t N C t  the 
impasse. In general given a ret of featurer on a prob- 
lem we can restrict to the moves that d e c t  o d y  thew 

featurer. The required shrinking takes place by elim- 
inating the featurea which are both fixed and whose 
value doer not figure in the creation of the impasse. 
ENLARGE 

Mom that effect the remaining features are now 
added to produce a rubproblem in which the impasse 
can be mlved. At each rtep the move added should 
affect the rmallert porsible number of additional fea- 
tures. 

An Example 
We can illustrate this process with the example of the 
fifteen pussle. We saw that an impasse can be reached 
when the firrt three tiles have been placed. The  
SHRINK procesr reduces this to an example equiva- 
lent to a three purrle in which the tiles appear in the  
order 3, x, 4, blank, when read clockwise from the top 
left hand corner, (x denotes one of the possible tile 
valuer other than thole already used.) We can then 
EXPAND to a five puzzle, which can be either hori- 
rontal or vertical in which the impasse is resolvable. 

The n u t  step in to determine whether there is an 
a t b  for the problem whose charts are isomorphic to  
the set of subproblem obtained by resolving the im- 
pamen. If thm h the case we then replace the original 
strategy by the following one. We suppose as before 
that we have a problem P with an adequate set of fea- 
turer ( f1,. . . , fk}. In addition we assume that there 
u an atlas A whore charts are isomorphic to the im- 
v e  resolving rubproblem obtained by the process 
outlined above. 

Uring the name ordering of features that was used 
for the original strategy that produced the impasses. 
1. Set as the current subgoal the reduction of the next 

feature to its goal value. 
2. As each feature comes up for reduction find a chain 

of minimal length joining the current state to a state 
in the current subgoal. 

3. Extract the move sequence joining the current point 
to one in which the feature has been reduced. 
Since the atlaa contains a resolution of all impasses 

thin method will rolve the problem whenever there is 
in fact a solution. 

The Length of a Solution 
We can now give an estimate for the length of a solution 
found using thia method. We need some preliminary 
definitionr. 
L will rtand for the maximum chain length required to 

perform the reduction of a feature. 
D will rtand for the maximum distance between two 

rtater in a chart. When a particular chart C is r 
ferred to we will use D(C) for the distance on t h  
chart. Note that this number can be infinite if t .  
chart ia an impaalle chart. 

98 



N will be the number of featurer on the problem. 
n will be the number of chainr required to reduce all 

the features. 

The first result ir the following 

Theorem 12 Let P be a problem with an ample atlor 
and features with valuer of L, D,n or above. Then the 
algorithm given above fin& a rolution of kngth at mort 
L x D x n .  

Proof. For each feature the length of chain required to  
reduce it does not exceed L, furthermore one each corn 
ponent of the chain the length of the move aequence 
required is less than D.0 

The corresponding reeult for abutment atlerea is the 
following. The proof is similar. 

Theorem 13 Let P be a problem with an abutment 
atlas and features with valuer of L, D,n 01 above. The 
algorithm above supplier a rolution of length at mort 

Although these results are quite simple they give 
qui te  good estimates. For example in the cane of the 
fifteen puzzle if we use the estimate of 22 M the maxi- 
mum distance on the five pusrle (Banerji 1990) we get 
an estimate of (22 x 3 x 15) + 3 for the length of a 
solution. A more perrpicuour venion of the argument 
yields (19 x 22) + 3. 

n x ( L  x D +  L- 1). 

348. Summary and Conclusions 
This paper has presented a method for mlving prob- 
lems that construct8 the impauer atwociated to an ini- 
tial strategy in order to be able to find a new strategy 
in which impasses will not arise. 

The method can be applied to produce short rolu- 
tions to the sliding tile puirles M well aa to the blockr 
world. Though the implementation in at thh stage rtill 
very problem dependent. Future work will produce a 
version that is more general. 
Acknowledgements I am grateful to Ranan Banerji 
for his reading of earlier &SR. of thir paper and for 
numerous helpful commentr during the coume of t h r  
work. 

References 
R.B. Banerji 1983. Artificial Intelligence: A Theont  
ical Approach. North-Holland. 
R.B. Banerji 1990. Heuristics: Alternativer to &- 
imum distance and a strange state of the five pus- 
zle. In Intelligent Syrtemr State of the Art and Future 
Direction*. (Rae and Zemankova Edm. Ellin Horwood 
Chichester UK . 
P. Benjamin, L. Dorrt, I. Maudhyau, M. R o w  1989. 
An Introduction to  the Decompcwition of Taak Repra 
sentations in Autonomour Syrtemr. Technical Report 
Philips Labs. 

G.W. Ernrt and M.M Goldstein 1982. Mechanical 
Discovery of Claseu of Problem Solving Strategies. 
J ACM 29 1 1-23. 
H.A. Guvenir 1987. Learning Problem Solving Strate- 
gier Using Refinement and Macro Generation. Ph.D. 
Thcab. Caae University. 
J.P.E. Hodgaon 1988. Solving Problem by Subprob- 
lem Claseification. Proceedings ISMIS Torino. 
J.P.E. Hodgron 1989. Automatic Generation of 
Heuristics. In Formal Methods in Artificial Intelli- 
gence: A Sourcebook. Ed. R.B. Banerji. Elsevir. 
R. Korf 1985. Learning to Solve Problems by  Macro- 
generation. Pitman. 
John Laird, Paul Rosenbloom, and Alan Newell 1986. 
Univerral Subgoaling and Chunking. Kluwer Aca- 
demic. 
A. Newell and H.A. Simon 1972. Human Problem 
Solving. Prentice- Hall. Englewood Cliffs. NJ. 
S. Nhuma and T. Kitahashi 1985. A Problem Solving 
Method Uring Differences or Equivalence Relations 
Between Stater. Artificial Intelligence 25 117-151. 
David Ruby and Dennis Kibler 1989. Learning Sub- 
goal Sequences for Planning. Proc 11th ICJAI. 609- 
614. 
M. Tambe, A. Newell and P.S. Rosenbloom 1990. The 
Problem of Expensive Chunks and its Solution by 
Rcrtricting Exprcasiveness. Machine Learning. 5 299- 

9 9  



H o l t e  

2 -< i ? f  
1 -  ,, When does Changing Representation Improve Problem-Solving Performance ? 

Robert Holte 
Computer Science Dept. 

Robert Zimmer and Alan MacDonald 
De~t. of Electrical Ennineerinn 

University of oaawa 
Ottawa, Ontario 

Canada KlN6N5 
holte@csi.uoaawa.ca 

Abstract 
The aim of changing repuentltion is the impovanau 
of problem-mlving efficiary. For the most widely 
studied funily of methods of chmge of repuentuion 
it is shwn rhu the vduc of I single ppunctcx. d l e d  
the expansion factor. is critical m detamining (1) 
whether the c h g e  of rqesamuon will improve or 
&gr& problem-solving e f f i k y  wd (2) whether 
the solutions produced using the chmge of 
represmution will or will not be exponentially longer 
than the sholtut solution. A muhod of compting the 
expansion factor for a given change of r e p m m a t h  is 
sketched m general d describai in det.il for 
homanorphic dungcs of rqrcacntlrion. The r d t r  
are heated with hanomorphic kompositiona of 
the Towen of Hrnoi poblah * 

Definitions 

The following definitions of the basic elements of 
problem solving are used throughout the paper. 
Only the definition of "solution" is non-standard. 

A state is an atomic object. 
An action, or operator. is a function mapping 

A p h .  or path, is a se~uence of actions. 
Agoelisasetofstates. 
A problem is a pair consisting of an initial state 

A problem space is a pait consisting of a set of 

statts to states. 

and a goel. 

states and a set of actions.' 

A solution (of Problem <SO,G>) is a sequence 
SO-AI-S 1 4 2 -  ...- S(n- 1)-An-Sn 

when Si is a state, Ai is an action 

- 
Brunel university 
Uxbridge, Mi&. 

England UB83PH 

mapping S(i-1) to Si, and Sn is in the 
gaal G. 

A solution plan (of Problem <SO.G>) is a 
sequence of actions mapping SO to a 
state in G. 

Change of Representation 

Problem space +e2 is a change of 
representation of problem space Pspacel if there 
exists a relation, R. between the two problem 
spaces that "preserves" solutions in the following 
sense. If R maps a problem, Probleml, in 
Pspacel to Problem2 in Pspace2, and Solution2 
is a solution of Problem2, and R maps Solution2 
to Planl (a plan in Pspacel). then Planl is a 
solution plan of Probleml. This definition is 
depicted in the following diagram. 

Robleml ------ 4 Problem2 
L 
L 

plan1 &------ Solution2 
This is an extremely general definition, 

pupposing nothing about the nature of the 
indivudal mappings, nor anytlung about how 
problem spaces oc the mappings are 
implemented. 

The net effect of change of representation 
is to "decompose" problem-solving in Pspacel 
into a three step computation: 

(1) translating a given problem into a problem 

(2) problem-solving in Pspace2, and 
(3) translating the solution back into Pspacel. 

inPspace2 

Change of representation may be applied 
recursively to any of these three steps. Most 
commonly (for example in "hierarchical" 
problem-solving (Knoblock.1991)). it is applied 
repeatedly to step (2) until this step becomes 

100 



trivial, Diagrammatically, this may depicted as: 

Problem1 - + Problem2 - + ... - + ProblemT 
1 
J 

Solution1 t Solution2 c- ... t SolutionT 
The rightmost problem space in this 

diagram can always be assumed to be the mvial 
space consisting of one state and one operator 
(the identity). In this way the explicit problem- 
solving step is entirely eliminated: a problem is 
solved by being translated into the trivial 
problem space and then translating the solution 
back into the original problem space. The total 
cost of problem-solving, then, is the sum of the 
costs of the two translations 

Solution Refinement 

Within the preceding general strategy for 
problem-solving by change of representation 
there are many possible variations. One of these 
variations, called "solution refinement" is the 
subject of this paper. Solution refinement is 
defined by the two following properties. First, 
the only complex computation is the translation 

. of a solution in Pspace(K) to a solution in 
Pspace(K-1). This computation is called 
refinement. Second, refinement preserves the 
structm of the solutions, in the following sense. 
Suppose the solution in Pspacew) is 

SO- Al-Sl-A2- ...-An- Sn 
A refinement of this solution must have the form 

XO-IO-RSO-RA 1 -X 1 -I 1 -RS l-RM-..,-Xn-In-RSn 
Where 

RSi is a state in Pspace(K-1) carresponding to 
state Si, 

RAi is an action in Pspace(K-1) 
corresponding to action Ai and defined on 
RSi, 

Xi is the result of applying action RAi to 
state RS(i-1) (XO is the start state in the 
problem to be solved in Rpece(K-l)), 

and Xi-Ii-Rsi is a solution to the problem of 
getting from Xi to RSi (if it happens that 
Xi=RAi, then Ii is empty). 

Every action in a solution has a countapart in 
the refinement of the solution, and usually there 
will be new actions added (the non-empty Ii). 
Therefore. a refinement will usually be longer, 
and can never be shorter, than the solution it is 
based on. In other words, as the initial "trivial" 

solution is translated back to become a solution 
in Rpacel it grows longer and longer - it 
expands each time it is refined. The "expansion 
factar" Qp.10-11, (Stefik & Conway.1982)) is 
defined as the average ratio of the length of a 
refinement to the length of the solution from 
which it was derived. An equivalent definition, 
which will be useful later, is that the expansion 
facta is the average number of states in the 
segments Xi-Ii-RSi. 

Solution refinement, in various forms, is 
the oldest and most widely studied method of 
change of representation. It is most often 
associated with the use of "abstractions". as in 
ABSTRIPS (Sacenloti, 1974). NOAH 
(Sacerdoti,l977). ALPINE (Knoblock.l991), and 
ABTWEAK (Yang & Tenenberg.1990). But 
solution refinement, as a strategy for problem- 
solving. is equally applicable to many ways of 
decomposing a problem space, not only to 
abstraction. For example, in our research 
(Zimmer et aL.1991). Pspace2 may be any 
refinable homomorphic image of Pspacel: that is, 
the mapping between Pspacel and Pspace2 may 
be any many-to-one mapping of states to states 
and operators to operaton? such that: (1) the 
behaviour of operators is preserved, and (2) there 
exists a refinement of every solution in Pspace2. 
Examples of solution refinement and 
homomorphic decompositions are given in the 
next section. 

The Towers of Hanoi Problem 

Although there are several diffmnt ways to 
define the Towers of Hanoi problem space, in 
this paper we will follow the standard definition. 
A state is defined by naming the peg on which 
each of the disks sits. There are 3 pegs, and any 
disk may be on any peg. so if there am D disks 
there are 3D states An operator is defined by 
naming a disk and a direction (clochvise or 
anticlockwise): thus there are 2D operators, given 
D disks. The effect of an operator is to move the 
specified disk from its current peg to the next 
peg in the specified direction. An operator is 
defined on a state only if all the disks smaller 
than the disk to be moved are on the peg that is 

* we ale C u d y  Uplain& the Use of mmy-tommy 
mrlrpingr d oparton. UlLd "distribului reprtlent.lionr" in 
(Holtc. 1988). 

101 



not affected by the operator, 
In the 2disk Towers of Hanoi problem 

there are 9 states, { <SL> I S. L E {1,23}}, 
where S indicates the peg of the smaller disk and 
L the peg of the larger disk. The 4 operators are 
SC, SA, LC, LA, where S (L) indicates the 
smaller (larger) disk, and C (A) indicates 
clockwise (anticlockwise). 

In the ldisk Towers of Hanoi problem. 
there are 3 states {<1>.&.<3>}. indicating the 
position of the lone disk, and two operam, C 
and its inverse A 

The Standard Decomposition 

There are exactly four homomorphisms of the 2- 
disk space, as de6ned above, onto the l-disk 
space. The standard one can be summarized in 
English as: "ignore the position of the smallest 
disk". Formally, in this decomposition state 
<SL> is mapped to state &. operators LC and 
LA are mapped to C and A. respectively, and 
operators SC and SA arc mapped to the identity. 

To illustrate the usc of this decomposition 
in problem-solving. consider the problem in 
which the start state is 4.b and the goal is 

' <33>. This 2 d i t  problem is mapped into the 
l-disk space. The translated problem has <1> as 
a s u n  state and <3> as a goal. The l-disk 
solution is <l>-A-<3>. This solution implicitly 
has identity operators acting on states <1> and 
<3>. R e h e n t  must now map this solution 
into a sdution to the original problem. Operam 
A maps back uniquely to the operator LA, but 
the states do not map back uniquely. nor do the 
implicit identity opexatars. For example. the 
identity operators on state <1> map back to any 
sequence of operators which, when applied to a 
state in which the larger disk is on peg 1, lead to 
a state in which the larga disk is on peg 1. 

Our r e h m e n t  algorithm works by 
rranslating a solution in psPace0, SolutionK, 
into a sequence of subproblems to be solved in 
Pspace(K-1). Each StatGoperator fragment in 
SolutionK is translated into a goal to be solved 
starting at the final state of the previously solved 
subproblem (or, in the case of the 6rst goal of 
this form. StaRing at the given start state of 
Pspace(K-1)). In the present example, SOlutionK 
is <l>-A-<3>: this is translated into the goal 
"<l>-A". whose meaning is "nach a state in 
which operator LA is applicable and the larger 
disk is on peg 1". Problem-solving commences 

from the start srate in Pspace(K-1). <1,1>, and 
proceeds, as usual, until this goal is satisfied. In 
this case the solution is <l , l> -SCd, l> .  This 
solution is the refinement of the <1>- segment of 
SolutionK. Note that the one state in SolutionK 
has been expanded into 2 states in this 
refinement this expansion factor is the key in 
determining whether this decomposition will 
improve or degrade the efficiency of problem- 
solving. 

Continuing with the example, aperator LA 
is added to the solution. along with the state 
(42,3>) to which it leads from 6.b. The state 
6 , 3 >  will be the start state for the next 
subproblem in the refinement process. Because 
we have finished with all the operators in 
SolutionK, only the final refinement subproblem 
remains: the goal is to reach <3,3>, the goal state 
in Pspace(K-1). Problem-solving commences 
from the state 6 3 >  and finds the solution 
43>-SC-<33>. This is the expansion of the 
-<3> segment of SolutionK: as before, there is an 
expansion factor of 2. The final solution to the 
on@ problem is cmted by linking together all 
the solutions to the refinement subproblems, 
giving <1 .l>-SC-Q.l>-LA4,3>-SC-d,3>. 

Non-Standard Decompositions 

In the 6rst non-standard decomposition. state 
< S b  is mapped to state 4% if S and L are both 
equal to P or if both are different than P. Thus, 
states <1.1>, Q3>. and e 3 5  map to state e l > ,  
states Q5, <13>, 4.b map to state a>, and 
states <3,3>. <la, a , r >  map to state <3>. 
Operators SA and LC both map to operator A, 
and SC and LA both map to C. 

In the second non-standard decomposition, 
state < S b  is mapped to state <S>: that is, the 
position of the larger disk is ignored. Thus. 
states <1,1>. 45. and <13> map to state <1>, 
states Q.1>. 425. Q3> map to state &, and 
states <3,1>. <3,lb.  d,3> map to state <3>. 
Operators LA and LC map to A and C. 
respectively. and SA and SC both map to the 
identity. 

In the finai decomposition. state < S b  is 
mapped to state eS-L+l>, where the subtraction 
is done modulo 3. In other words, the mapping 
is based on the relative positions of the two 
disks. States in which the two disks are on the 
same peg - <1,1>, Q5, and 4,3> - are 
mapped to state <1>. States in which the smaller 

102 



disk is one peg "ahead" of the larger disk - 
4b. And states in which the smaller disk is one 
peg "behind" the larger disk - <1,2>, 4?,3>, and 
< 3 , b  - are mapped to state <3>. Operators LC 
and SC both map to operatar C. and operators 
LA and SA both map to operator A. 

When any of these! decompitions is 
applied to the Ndkk Towers of Hanoi problem 
space the resulting space is isomorphic to the 
(N-1)disk space. Hence the same decomposition 
can be applied repeatedly to produce a sequence 
of successively smaller problem spaces ending 
with the trivial problem space. 

R , l > ,  <3,2>, and <1,3> - are mapped to state 

Problem-solving Efficiency 

The aim of all kinds of change of representation. 
including solution refinement, is to improve the 
efficiency of problem-solving. Consequently, it 
would be useful to be ab& to predict the change 
in problem-solving efficiency that would result 
by making a particular change of representation. 
'Ibis ability would enable a system to select the 
most efficient among a set of possible changes of 
repsentation - for example, to select the best 
of the four decompositions of the 2disk Towers 
of Hanoi problem. And, accompanied by an 
estimate of the problem-solving efficiency of the 
original problem representation. this ability 
would enable a system to determine whether any 
of he changes of representation is actually an 
improvement 

It is not di5cult to analyze the efficiency 
of solution refinement methods under the 
assumption that the expansion factor at every 
level is the same. Let A be the number of 
nontrivial problem spaces, and X be the 
expansion factor. Then the length of the final 
solution is xA. If W ~ X ]  denow the amount of 
"work" required to refine a single state-opemtor 
solution fragment, then the total amount of work 
required to create the final solution is 

In his thesis (Knoblock,l991), Craig 
Knoblock observes that if X is a constant and A 
is proportional to the logarithm of the optimal 
solution length, then the work required by 
solution refinement is exponentially less than the 
work required by a brute force problem-solver in 
the original (undecomposed) problem space. 
These circumstances hold when the standard 

wm*(xA-l)/(x-l). 

decomposition is used to solve Towers of Hanoi 
problems in which all disks are initially on the 
-e peg. 

This formula for "work" provides a direct 
way to evaluate the efficiency of different 
decompositions of a problem space, providing 
that one can compute W M  and measure the 
values of X and A for a given decomposition. In 
fact, the only real difficulty is the calculation of 
X. The number of non-trivial problem spaces is 
normally selfevident, and the term W M  is 
almost always negligible compared to X*. Note 
that with the values of X and A we can calculate 
the expected length of a solution as well as the 
expected amount of work required to create i t  

To see how to calculate X, recall that X, 
the expansion factor. is (by definition) equal to 
the average number of states in the segments 
"Xi-Ii-RSi" that are inserted during refinement. 
If the method used to change representation 
imposes constraints on the possible values of Xi 
and RSi, then these constraints may provide 
enough information to compute an expected 
value, or at least an upper bound, on X. For 
example, in homomorphic decompositions it must 
be the case that Xi and RSi are "equivalent", Le. 
that they are mapped to the same state by the 
homomorphism. Given this fact, the expected 
value of X is simply the "average" length of the 
shortest path (operator sequence) between each 
possible pair of equivalent states. "Average" is in 
quotes because the actual probability of 
encountering each of the 4 , R S b  pairs in 
practice is normally unknown. 

To illusaate this computation, consider the 
standard decomposition of the 2-disk Towers of 
Hanoi problem space. 9 different <xi,RSb pairs 
can be constructed from the 3 states that map to 
<1>. Of these 9 pairs. 3 are of the form <S,S>, 
3 are of the fonn <S,SC(S)>, and 3 are of the 
form <S,SA(S)>. The shortest path connecting S 
to S has a length (number of states) of 1, and the 
shomst path connecting S to SC(S) or SA@) has 
a length of 2. The same analysis holds for the 
the states that arc mapped to a>, and for those 
that are mapped to <3>. Therefore the expected 
value of X. assuming all pairs of equivalent 
states are equiprobable, is (3*1 + 6*2)/9, or 5P. 
This turns out to be impossibly low - in the N- 
disk Towers of Hanoi problem X must be larger 
than twice the Nth root of 2L4 - an indication 
that all pairs are not actually equiprobable. 
Nevertheless, this value may still be useful to 

103 



compare with the value of X computed in the 
same manner for the other decompositions. 

The three other decompositions all have the 
same expected value of X, namely 2.56. This is 
considerably larger than the value for the 
standard decomposition. Thus we expect that the 
standard decomposition will produce shorter 
solutions with less work than the other 
decompositions. To test this prediction, the 
standard decomposition and the second non- 
standard decomposition were used to solve all 
N-disk problems in which all disks are initially 
on peg 1. Work is measured as the number of 
arcs traversed by a breadth-hrst problem-solver 
before finding a so i~ t i~n?    he results of this 
experiment are: 

# of Disks WORK 
0 Standard Non-Standard#2 
2 8.7 12.8 
3 25.4 47.1 
4 63.0 133.0 
5 142.0 328.0 

I OfDisks SOLUTION LENGTH 
(N) . Standard Non-StandardK2 
2 3.0 3.2 
3 5.7 6.7 
4 11.0 14.3 
5 21.7 29.9 

The ratio of .massive solution lengths 
gives a true indication of the actual expansion 
factors of the two decompositions: X is optimal 
(slightly less than 2.0) for the standard 
decomposition and 2.1 for the non-standard 
decomposition. The dif€ercncc in expansion 
factors is much smaller than predicted, but still 
results in a significant dif€enmcc in solution 
lengths and the work required. 

If a formula is available to compute the 
expected amount of work required for problem- 
solving in the original (undecomposcd) problem 
space, then this can be compared to the wmk 
formula for solution refinements to detamine 
whether a given decomposition will i m p v e  or 
degrade efficiency. In the Ndisk Towers of 
Hanoi problem space the expected amount of 
wark is half the number of am in the entire 

space (assuming that the problem-solver never 
traverses the same arc twice), which is given by 
the formula 3*(3N-1)/2. Because this formula has 
the same form as the work formula for solution 
refinement, it follows immediately that a 
decomposition will degrade performance on the 
N-disk Towers of Hanoi if and only if its 
expansion factor is 3 or greater. 

In the same way that the work required 
with and without a change of representation can 
be compared, so too can solution length be 
compared. A breadth first problem-solver always 
finds a minimal length solution. In the Ndisk 
Towers of Hanoi problem space. the minimum 
solution length, for the avemge problem in which 

disks are initially on peg 1. is (2”+’)+1)/3. 
Comparing this to the expected solution length 
for solution refinement, it follows that a 
decomposition will produce exponentially longer 
solutions whenever its expansion factor is greater 
than2 

The fact that the critical value of the 
expansion factor is different for solution length 
and work-required leads to the apparent paradox 
that some decompositions will construct 
exponentially longer solutions and yet do 
exponentially less work. In fact, the second 
non-standard decomposition exhibits this 
phenomenon, as the following data shows (the 
experimental conditions are the same before). 

W of Disks WORK 
0 Original Space Non-Standard 12 
2 10.8 12.8 
3 37.8 47.1 
4 118.8 133.0 
5 361.9 328.0 

#ofDisks SOLUTION LENGTH 
0 Original S p  Non-Standard #2 
2 3.0 3.2 
3 5.7 6.7 
4 11.0 14.3 
5 21.7 29.9 

104 



Conclusion Ref ere n c es 

The aim of changing representation is the 
improvement of problem-solving efficiency. For 
the most widely studied family of methods of 
change of representation it has been shown that 
the value of a single parameter. called the 
expansion factor, is critical in determining (1) 
whether the change of repmentation will 
improve ar de@ problem-solving efficiency, 
and (2) whether the solutions produced using the 
change of representation will or will not be 
exponentially longer than the shortest solution. 
A method of computing the expansion factcr for 
a given change of representation has been 
sketched in general and described in detail for 
homomorphic changes of representation. The 
resulrs have been illustrated with homomorphic 
decompositions of the Towers of Hanoi problem. 

Holte, R. C. (1988). "An Analytical Framework 
for Learning Systems", Ph.D. dissertation, Brunel 
University. also TR-AI88-72, Computer Sciences 
Dept., Univ. of Texas at Austin. 

Knoblock. C.A. (1991). "Automatically 
Generating Abstractions for Problem Solving", 
technical report CMU-CS-91-120, Computer 
Science Department, Camegie-Mellon University. 

Knoblock. C.A.. J.D. Tenenberg, and Q. Yang 
(1991). "Characterizing Abstraction Hierarchies 
for Planning". Roc. UCAI. pp.692-697. 

Sacerdoti, E. (1974). "Planning in a hierarchy of 
abstraction spaces", Artificial Intelligence 
5(2):115-135. 

SacerQti, E. (1977). "A Structure for Plans and 
Behaviour", American Elsevier Publishers. 

Stelik, M. and Lynn Conway (1982). "Towards 
the Principled Engineering of Knowledge", The 
AI Magazine, vo1.3. no.3, pp. 4-16. 

Yang, Q. and J.D. Tenenberg (1990). "Abtweak: 
Abstracting a nonlinear, least commitment 
planner", Roc. AAAI. pp.204-209. 

Zimmer, R.. Alan MacDonald, and Robert Holte 
(1991). "Reasoning about Representations: 
Towards the Automation of Representation 
Change", Proceedings of the Florida Artificial 
Intelligence Research Symposium, pp. 201-205. 

,105 



I s c o e  

Domain and Specification Models for Software Engineering 

Neil Iscoe, Zheng-Yang Liu, Guohui Feng 
EDS Research, Austin Laboratory 

1601 Rio Grande, Ste 500 
Austin, Texas 78701 

iscoe Qaus tin.eds.com 

Abstract 
This paper discusses our approach to representing 

application domain knowledge for specific software 
engineering tasks. Application domain knowledge is 
embodied in a domain model. Domain models are used to 
assist in the creation of specification models. Although 
many different specification models can be created from 
any particular domain model, each specification model is 
consistent and comect with respect to the domain model. 
One aspect of the system-hierarchical organization is 
described in detail. 

Introduction 
Creating, maintaining and evolving software systems 

requires an understanding of both programming knowledge 
and application domain knowledge. Programming 
knowledge is relatively well understood. It is formal, 
modeled in a variety of ways, explicit enough to be taught 
to novices, and general enough to apply across many 
domains. Although empirical field studies (Curtis, et al.. 
1988) have shown that application domain knowledge is 
critical to the success of large projects, this knowledge is 
rarely modeled as needed. It is usually implicitly embodied 
in the application code rather than explicitly recorded and 
maintained separately from the code. Even when the 
knowledge is recorded, it is generally stored in voluminous 
natural language documents in an informal rather than a 
formal manner. Although problem-specific languages 
partially remedy this situation, they still capture domain 
knowledge in an ad hoc rather than a systematic manner. 
Furthermore. these languages are generally not designed in 
such a way that the results can be generalized or even 
replicated. 

Application domain models are representations of 
relevant aspects of application domains that can be used for 
different operational goals in support of specific software 
engineering tasks or processes. Domain models determine 
what there is in the world for reasoning about given 
application domains and sanction the types of inferences 
allowed. 

Operational goals are always implicit in the construction 
of a domain model and are essential to understanding the 
form and content of that model. Unlike generalized 
knowledge representation projects such as Cyc (Lenat, 
1990) that attempt to provide a basis for modeling 
encyclopedic knowledge, domain modeling explicitly 

acknowledges the commonly held view (Amarel, 1968) 
that representations are designed for particular purposes. 
These purposesthe operational goals-inherently bias any 
particular solution and dictate the fmal form of the model. 
As real-world domains are infinitely rich and diverse, we 
inevitably adopt particular perspectives in deciding what is 
relevant with respect to given tasks when formulating 
models (Liu and Farlej.. 1991). Even within the field of 
domain modeling, m:ny different operational goals and 
modeling projects are king pursued (Iscoe, et al. 1991). 

In the next section, we give an overview of the domain 
modeling research at EDS and our corresponding 
operational goals. We then introduce a model 
reformulation concept-the generation of multiple 
specification models from a single domain model. The 
remainder of the paper focuses on one of the mechanisms 
which allows a specification designer to rapidly construct 
specification models that are consistent and correct with 
respect to the original domain model. 

Domain Modeling Research 
EDS specializes in creating software for a variety of 

industries. Each industry area such as utilities, finance, or 
health insurance has an associated body of knowledge 
which is critical to the understanding of specification and 
implementation of software systems. Domain expertise is 
acquired by personnel over a period of years, and the 
company is organized into strategic business units (SBUs) 
so that knowledge about a particular industry can be 
maintained over time. 

At the EDS Austin research laboratory, we are 
attempting b create a domain modeling system which can 
achieve the following operational goals: 

Requirements & Specifications-Eliciting, verifying, 
and formalizing software requirements and specifications, 

Program TransformatiodGeneration-Transforming a 
specification into efficient executable code, 

Reverse Engineering-Identifying the semantics of 
existing code in terms of a partial specification. 

Explanation, Education & Communication-capturing 
and communicating application domain knowledge. 

The realization of these operational goals is consistent 
with our long-term plan for creating knowledge-based 
tools to support programming-in-the-large (Barstow, 1988) 
development. The domain modeling approach provides 
ample opportunities for investigating and creating new 
development paradigms. 

106 



, I 

Figure 1. Domain Modeling with Operational Goals 

Figure 1 illustrates the context in which we model. The 
industry knowledge for each SBU is instantiated into a 
domain model, which then serves as a source of knowledge 
for programs (the ovals) to achieve our operational goals. 
In the figure, the specification model (rectangle) contains 
the specification for a specific system within an application 
domain. Because one of our goals is to generate executable 
code, we require that any particular specification model be 
consistent. A very large but finite number of specification 
models can be created which are consistent and are correct 
with respect to a particular domain model. 0 Domain Knowledge 

Modeling 
Language n 

Figure 2. Instantiating Specification Models 

Figure 2 illustrates the two separate modeling tasks 
required by our approach. Domain experts interact with a 
system to store their knowledge in terms of a domain 
model. Specification designers then use the system to build 
specification models which satisfy constraints in the 
domain model. 

In order to create a specification model, the designer 
selects a set of relevant policies and constraints from the 
domain model that must be included and enforced in the 
specification model. The constraints include intra-attribute 
as well as inter-attribute relationships within and across 
entities relevant to the task at hand. 

Dynamic Knowledge Structure 
The remainder of this paper presents one aspect of our 

meta-model representation that is relevant to this 
workshopdynamic restructuring of a hierarchically 
organized domain knowledge. 

While most would agree that hierarchical organizational 
strategies provide a reasonable way to structure knowledge 
within complex domains, the creation of a hierarchical 
structure, like any type of representational scheme, imposes 
a particular view of the world. Unfortunately, there is no 
particular view that is optimal for every application. 
Although the programs within a particular application share 
the same legal, physical, and economic constraints, the 
construction of any particular specification model depends 
upon a set of policy decisions that determine how cases are 
handled. Furthermore, sofware in rhe large systems are 
continually changing in such a manner that the concept of a 
static hierarchy is insufficient to capture the process of 
system evolution. 

Consider software systems that manage the payment of 
health insurance claims. Although conceptually simple, 
these systems handle hundreds of thousands of different 

107 



cases. One way to represent these cases is to enumerate the 
leaf nodes of the hierarchies created by the appropriate 
partitioning of attributes such as gender, age, family-status, 
previous-condition, employment, deductibles, copayments, 
prognosis, and so on. Unfortunately, the tree structure 
created by case expansion not only obscures relevant and 
interesting cases, but is also a monolithic structure. It is a 
paradox of object-oriented approaches that well-adapted 
structures are not adaptable to new situations. 

Because of the combinatorial explosion of the leaf 
nodes, it makes sense to handle the cases at as high a level 
as possible. Term subsumption systems such as CLASSIC 
(Borgida et al. 1989) automate this process by determining 
the place in a hierarchy in which terms are subsumed. But 
subsumption systems assume a single smcture in which all 
sub-models can belong. In the case of applications such as 
health insurance, individual modules may have different 
hierarchical structures and still maintain the integrity and 
constraint rules of the domain model. 

Attribute Definitions 
Attributes are normally considered as data values or slot 

fillers within a class or frame. However, the standard 
treatment of attributes as lists of data values with some 
underlying machine representation fails both to capture 
sufficient semantic information from the application 
domain and to state definitions with sufficient formality to 
allow semantics-related consistency checks. 

Attributes are functions which define how a set of 
objects is mapped within a class. One type of attribute has 
a value set represented by a nominal scale which consists 
of a set of values, HA) = (C1, . . . Cn]. 

The semantics of an application domain are maintained 
by creating categories in such a way that items to be 
categorized with respect to a particular attribute are as 
homogeneous as possible within a category and as 
heterogeneous as possible between categories. Examples 
of nominal scales abound and map cleanly to the notion of 
enumerated type as shown below: 

(Colors 
:type nominal-scale 
:vulues (Red Yellow Green Blue) 

The next type of attribute is an ordinal scale-a nominal 
scale in which a total ordering exists among the categories. 
Interval and ratio scales are the more quantitative scales 
and add definitions of dimensions, units, and granularity. 

This brief description of atuibute type was included to 
allow the reader to understand the examples in this paper. 
Attributes have additional types and a number of other 
properties which are explained in (Iscoe. et al 1992). 

Hierarchical Decomposition 
Hierarchies are a natural way to view and organize 

information and, at some level of abstraction, are a -r r t  of 
most object-oriented and knowledge represei, lion 
languages. Unfortunately, the simplicity of these CI - ~ t s  
can sometimes obscure the semantics that a mi,L-i is 

attempting to capture. That one's needs dictate one's 
ontological choice is a fundamental premise of knowledge 
engineering. The ability to systematically define a new set 
of attributes by partitioning the value sets of old attributes 
and then using these new attributes to reclassify the domain 
in accordance with the new requirements is a fundamental 
aspect of our attribute characterization. By preserving the 
"ontological map" as a component of the attribute, the 
domain modeler can shift between the differing paradigms 
modeled by various classes of objects. 

Attribute characterization provides a representation and 
systematic methodology for the partitioning of attributes 
that facilitates the way they are organized, subdivided, and 
built into hierarchies. An attribute restriction is a new 
attribute whose value set and set of applicable relations are 
subsets of the original attribute. 

Creating a new attribute serves the dual purpose of 
creating a set of views on the old attribute as well as 
creating a new attribute. Often, new auributes are defined 
in terms of old attributes by partitioning the original value 
set and then equating each new attribute value with an 
element of the partition. As an example, an accounts 
receivable (AR) system may use the attribute 
days-to-payment whose value is the average number of 
days it takes for the client to pay a bill. 

(days-to-paymenc 
:type ratio-scale 
:dimension time 
:unit h Y S  
:min 0 
:mnx 360) 

From the standpoint of AR applications, a more useful 
attribute might be : 

(type-ofgayer: 
:type Ordinal-scale 
:Ordered-by lateness of paymen 
:values (pays-on-time slow-pay dead-beat)) 

This new attribute will be defined by partitioning the 
value set of days-to-payment, V p  by subdividing the 
range of values, then equating each value with one of the 
elements of the partition as illustrated in figure 3 and 
described as follows: 

(type-ofqayer 

(pays-on-time (c=30) 
(slowjay 

(dead-beat (>= 90)))) 

:mapped-from days-to-payment 

(AND (> 30) (c 90))) 

&yS-IOJaplcnt: 
Ratio-sedc Tim in Days (Min 0) (Max 360) 

QF-ofpYU: typC-dq.ya: type-ofqayu: 
Pay-on-time Slowgay Deadbeat 

Figure 3 - Partitioning days togapent  

108 



Note that the days-to-payment attribute is based on a 
ratio scale while the type-ofsayer attribute is based on an 
ordinal scale. In general a defined attribute represents a 
loss of information (in this example, the number of days 
overdue) in return for a more useful and inherently less 
detailed category. 

Using Population Parameters 
Population parameters facilitate the formation of new 

attributes. For example, some graduate admissions 
committees use interval-scaled GRE scores to separate 
applicants into acceptance categories. Population 
parameters allow designers to create new attributes based 
on restrictions to the original attribute as shown below: 

GRE-Sfore: Intaval-rak Score in GRE units 
(min 400) (max 1600) 
(dist normal) ( m a  1100) (stddcv 12S) 

Figure 4 - Using Population Parameters to 
Restrict an Attribute 

Figure 4 shows the GRE score as an attribute which 
could be attached to a student. Understanding the 
distribution of values within the value set of GRE scores 
allows application designers to create partitions in any one 
of a variety of ways. For example, assume that an 
application designer wanted to create an initial partition 
based on the requirement "accept all students who score in 
the top x% on the GRE. consider those who score between 
x% and y%, and reject those who score in the bottom y%. " 
Given this type of requirement, the domain model contains 
the appropriate information to use and an algorithm to 
produce the correct raw score numbers to achieve such a 
partition. 

Another way that these requirements are sometimes 
stated is to build a partition based on an absolute raw score. 
For example, a requirement like "accept all students who 
score above 1450 on the GRE" can be easily incorporated. 
Furthermore, this type of specification can be used 
interactively so that the ,designer can juggle between raw 
scores and percentiles until the partitions appropriate for 
the application domain are produced. 

Domain and Specification Models 
In this section we focus on relations between attributes 

within a single domain model class. For the purposes of 
this discussion we define the following attributes: 

(name :type identifier) 
(eye-color :type nominal-scale 

:values (brown, blue, green)) 
(Gender :type nominal-scale 

:values (male female)) 

:values (Y N)) 

:dimension (money) 
:unit (dollar) 
:granularity (.01)) 

:values (under65 65-and-over) 
:mapped-from age 

(Hysterectomy :type ordinal-scale 

(Medicare-payment :type ratio-scale 

(Age-m type: ordinal-scale 

(under65 (< 65)) 
(65-and-over (>= 65))) 

Although other constraints exist, domain model classes 
can be regarded as consisting of sets of attributes which are 
either required or might be included within a particular 
domain model. These constraints are expressed as 
follows: 

musthuve(c, a, c o d )  - attribute a must be used 
in class c in a model if condition cond evaluates 
to true. 
applicable(c, a, c o d )  - attribute a can be used in 
class c a model if condition cond evaluates to 
true. 

Within any particular specification model, an attribute is 

usedfm, c, a, c o d )  - within model m, attribute a 
is used in class c in model m if condition cond 
evaluates to me. 

The most straight-forward relationship between a 
domain model and a specification model is that must-have 
attributes are used in all specification models and 
applicable attributes are selected by the specification 
designer. 

must-have@, a, cond) c) Vm used(m, c, a, cond) 
applicable(c, a, cond) c) 3m used(m, c, a, cond) 

must-have(c,a, cond) applicable(c,a, cond) 

simply classified as used within a class. 

thus 

For example, in a domain model, name might be 
required for all specification models, while eye-color could 
be selected only if it were appropriate for the particular 
specification model. 

(person 
:must-have ((Name 0) 
:applicable ((eye-color 0) 
... ) 

The application of these constraints when cond is 
vacuously true is fairly standard feature in most modeling 
languages of this type. However, name and eye-color are 
attributes which are total and are not as interesting as the 
cases that occur when the attributes are partial functions. 

Conditions for Function Evaluation 
Recalling that an attribute is a function which maps 

objects to a particular property, cond can be interpreted as 
the condition which must be satisfied for the attribute to be 
a total instead of a partial function. In other words, cond 
defines the subset which is the domain of applicability of 

109 



I 
I .  

the partial function. For example for a person class 
hysterectomy is only applicable if the gender is female. 

(applicable person Hysterectomy 
(= Gender female)) 

The domain modeling system is designed so that the 
conditions required to establish the proper domain for an 
attribute are automatically maintained. These conditions 
are constrained in such a way that tractability is maintained 
and are of the form f f p ,  ai  v1)f ... fpn an v,)) , where p i  is 
the name of a predicate, ai is the name of an attribute, and 
vi is a value of the attribute. 

When conditions exist, the following axiom is needed: 
(applicable c a condl) -+ 
[(used m c a cond2) + (condl4 con&)] (1) 

A user can create a specification model with any 
particular class hierarchy as long as the domain policies 
and consmints are satisfied. 

Domain and specification model consistency is 
maintained by a specialized theorem prover. The theorem 
prover, STR+VE, is an upgraded version of the prover 
presented in (Bledsoe 1980) for proofs of theorems in 
general inequalities. A TMS is being constructed to 
interface between the modeling system and the theorem 
prover 

We are currently experimenting with ways to capture 
and verify domain modeling constraints by presenting 
redundant information in a variety of ways. We believe 
that many of the specification problems in large systems 
are created when value set changes cause a single case to 
be changed but fail to correct cases that were identified 
from a previous inference. 

For example, if we assume that hysterectomy is 
applicable to females, the system can infer that 
hysterectomy cannot apply to males by using axiom 1, the 
definition of applicable, and the definition of gender to 
derive a contradiction. 

applicable(c, a, cond) t) 3m used(m, c, a, cond) 
applicable(P. hys, [(= gender m)]) 

-(= Gender, M) +(= Gender, F) 
(= Gender, M) -+ -(= Gender, F) 

A key point is that when people are presented with value 
sets they automatically and unconsciously perform 
substitutions such as the ones listed above. This is a 
reasonable way to build a model until a value set changes. 
In large systems, value sets are frequently changed. 
Consequently, conclusions that were drawn by using 
negation to infer values become invalid. We use the 
applicability of conditions and the system’s knowledge of 
value sets to attempt to provide the proper cases for the 
domain modeler to check when condtions change. 

Discussion 
In this paper, we have presented the concept of modeling 

application domains in order to achieve the operational 
goals of program specification, code generation. and 
reverse engineering. The main concept is that multiple 
specification models can be created that are consistent and 
“correct” with respect to a domain model. Domain models 

represent information about a particular industry area. 
Specification models represent information about a 
particular system. 

Domain and specification models are constructed by 
using a graphical interface to interactively create a set of 
rules based on attribute value set partitions and the 
preceding axioms. The system is being implemented using 
Motif GUI on SPARC workstations. Although it is 
currently operating in a single user mode, it is being 
designed to be accessed simultaneously by multiple domain 
modelers. We are also trying to accelerate the knowledge 
capture process by reverse engineering data models that 
have been captured by an existing EDS case tool and 
instantiating them into the appropriate domain models. 

References 
Amarel, S .  1968. “On Representations of Problems of 

ReLmning About Actions,” in Machine Intelligence 3, D. 
Mi ”le. Ed., American Elsevier, New York pp. 131-171. 

- :SIOW, D. 1985. “Domain-Specific Automatic 
Prc zrsmming.” IEEE Transactions on Software 
Engineering, vol. SE-11, no. 11, pp. 1321-1336. 

Barstow, D. 1988. “Artificial Intelligence and Software 
Engineering,“ in Shrobe, H.. ed., Exploring Artificial 
Intelligence. AAAI. Morgan Kaufmann. San Mateo, CA. 

Bledsoe. W. W., and Hines, L. M. 1980. “Variable 
Elimination and Chaining in a Resolution-Base Prover for 
Inequalities,“ Proceedings of the 5th Conference on 
Automated Deduction, Les Arcs, France, Springer-Verlag, 

Borgida. A., Brachman, R.J., McGuinness. D.L., and 
Resnick, L.A. 1989. “CLASSIC: A structural data model 
for objects,’‘ in Proceedings of the I989 ACM SIGMOD 
International Conference on Management of Data, pp. 59- 
67. 

Curtis, B., Krasner. H. and Iscoe. N. 1988. “A Field 
Study of the Software Design Process for Large Systems,” 
Communications of the ACM. vol. 31, no. 11. pp. 1268- 
1287. 

Davis, R. 1991. “Knowledge Representation: 
Broadening the Perspective,” AAAI-91 Panel, Anaheim, 
CA. 

Iscoe, N, Browne. J.C., Werthv J. , and Liu, 2.Y. 1992 
“Attributes - Building Blocks for Modeling Application 
Domains,” Submitted to IEEE TSE 

Iscoe, N., Williams, G. and Arango, G., Eds. 1991. 
Domain Modeling for Software Engineering, Proceedings 
of Domain-Modeling Workshop, Austin, Texas. 

Lenat, D.B. , Guha. R.V.. Pitman, K., Pratt. D., and 
Shepherd, M. 1990. “Cyc: Toward Programs with 
Common Sense,” CACM, vol. 33, no. 8, pp. 3049. 

Liu, 2.-Y. and Farley, A. 1991. “Tasks. Models, 
Perspectives, Dimensions,” The 5th International 
Workshop on Qualitative Reasoning Austin, T:.c:u, pp. 1- 
12. 

pp. 70-87. 

110 



Kno b l  o c  k 

6 r 3 , ’  

4 - 1  - - d, 2 , -  -2 

Research Summary - *-- ‘c 
Craig A. Knoblock 

University of Southern California 
Information Sciences Iiistitute 

4676 Admiralty Way 
Marina del Rey, CA 90292 

knoblock@isi.edu 

Reducing search in problem solving is a central issue 
in building systems to solve complex and interesting 
problems. One approach to reducing search is through 
the use of abstraction. My research has focused on 
three closely related issues: identifying the properties 
that comprise a useful abstraction, developing tech- 
niques for automatically generating abstractions, and 
making effective use of these abstractions in problem 
solving. 

An abstraction space is formed by ignoring details 
of a problem space. An important property of an ab- 
straction space is that a plan produced in that space 
can be refined without undoing the work performed in 
the abstract space. [Knoblock et al., 1991b] provides a 
formal characterization of this property, called ordered 
monotonicity, which forms the basis of an algorithin 

Based on the ordered monotonicity property, I im- 
plemented a system called ALPINE that automatically 
generates abstractions for problem solving [Knoblock, 
1990b, Knoblock, 1991al. The system takes both a 
problem and an initial problem space and produces a 
hierarchy of abstract problem spaces that is tailored to 
the particular problem to be solved. A L P I N E  produces 
abstractions in a variety of domains [Knoblock, 1990a, 
Knoblock, 1991a, Knoblock, 19921 and then uses them 
for hierarchical problem solving. 

The abstractions generated by A L P I N E  produce sig- 
nificant performance improvements [Knoblock, 1991 b]. 
The hierarchical problem solver is implemented as an 
extension to the PRODIGY system [Carbonell et a/ . ,  
19911, making it possible to experiment on existing 
domains and both combine and contrast the use of 
abstraction with other types of learning. [Knoblock 
et al., 1991a] describes the integration of A L P I N E  with 
explanation-based learning. We also plan to integrate 
ALPINE with the learning by analogy component in  

* for generating abstractions spaces. 

PRODIGY. 

References 
[Carbonell et al., 19911 Jaime G. Carbonell, Craig A.  

Knoblock, and Steven Minton. PRODIGY: An in- 
tegrated architecture for planning and learning. I n  

Kurt VanLehn, editor, Architectures f o r  Intelligence, 
pages 241-278. Lawrence Erlbaum, Hillsdale, NJ, 
1991. Available as Technical Report ChlU-CS-89- 
189. 

[Knoblock e2 al., 1991aI Craig A. Knoblock, Steven 
Miiiton, and Oren Etzioni. Integrating abstraction 
and explanation-based learning in PRODIGY. In 
Proceedings of the Ninth National Conference on Ar- 
tificial Intelligence, Anaheim, CA, 1991. 

[Knoblock et al., 1991b] Craig A. Knoblock, Josh D. 
Tenenberg, and Qiang Yang. Characterizing ab- 
straction hierarchies for planning. In Proceedings of 
the Ninth National Conference on Artificial Intelli- 
gence, Anaheim, CA, 1991. 

[Knoblock, 1990al Craig A. Knoblock. Abstracting the 
Tower of Hanoi. In Proceedings of the Workshop on 
Automatic Generation of Approximations and Ab- 
straciions, Boston, MA, 1990. 

[Knoblock, 1990b] Craig A. Knoblock. Learning ab- 
straction hierarchies for problem solving. In Proceed- 
ings of the Eighth National Conference on Artificial 
Intelligence, pages 923-928, Boston, MA, 1990. 

(Knoblock, 1991aI Craig A. Knoblock. Automatically 
Generating Abstractions f o r  Problem Solving. Ph.D. 
Thesis, School of Computer Science, Carnegie Mel- 
Ion University, 1991. Available as Technical Report 

[Knoblock, 1991b] Craig A .  Knoblock. Search reduc- 
tion in hierarchical problem solving. In Proceedings 
of fhe Ninih National Conference on Artificial Iniel- 
ligence, Anaheim, CA, 1991. 

[Knoblock, 19921 Craig A. Knoblock. An analysis of 
ABSTRIPS. In J .  Hendler, editor, Artificial Intel- 
ligence Planning Systems: Proceedings of the First 
In t ern at ion a1 C o  njere n ce ( A  IPS92). Morgan K auf- 
mann, San Mateo, CA, 1992. 

CMU-CS-91-120. 

111 



Lansk:  

1 ; ;;- [ I  ; i 

’1’) 
Localization vs. Abstraction: 

A Comparison of Two Search Reduction Techniques 

Amy L. Lansky 

Sterling Software 
NASA Ames Research Center (AI Research Branch) 

MS 269-2, Moffett Field, CA 94035 
LANSKYOPTOLEMY.ARC.NASA.GOV 

Abstract 
There has been much recent work on the use of 
abstraction to improve planning behavior and cost. 
Another technique for dealing with the inherently 
explosive cost of planning is localization. This pa- 
per compares the relative strengths of localization 
and abstraction in reducing planning search cost. In 
particular, localization is shown to subsume abstrac- 
tion. Localization techniques can model the various 
methods of abstraction that have been used, but 
also provide a much more flexible framework, with 
a broader range of benefits. 

1 Introduction 
Over the years, several research results have a p  
peared on the use of abstraction to guide and im- 
prove planning performance [2, 3, 4, 5, 11, 121. Ab- 
straction techniques restructure a problem and the 
problem-solving process into a set of “abstraction 
levels.” At the top level of abstraction, the prob- 
lem is described and solved at the most coarse- 
grained level of detail. Each successive level is made 
more concrete than its predecessor by incremen- 
tally adding information into the problem descrip 
tion. The use of abstraction can benefit planning if 
the solution found at an abstract level serves as a 
good starting point for problem-solving at  the next 
level of detail. Thus, abstraction may be viewed as 
a heuristic for ordering which pieces of the overall 
planning problem are solved first, and which later. 
At least two methods have been used within the 
planning community for creating levels of abstrac- 
tion: (1) creation of more concrete levels of detail 
by incrementally decomposing abstract actions into 
more concrete subactions (operator abstraction); and 
( 2 )  creation of more abstract levels by incrementally 
eliminating required action preconditions (state ab- 
straction). 

Recent work has also appeared on the use of do- 
main localization or decomposition to structure a 
problem description and thereby guide and improve 
planner performance. In this case, search savings 
are attained via a “divide and conquer” approach 
to reasoning. A domain and problem description 
(its actions, definitions, goals, preconditions, and 
any other constraints or properties) are divided up 
into regions. Semantically, regions define the precise 
“scopes of interaction” between domain properties 
and actions. Each region consists of a subset of the 
overall set of actions and the various properties and 
goals that pertain to those actions.’ The localiza- 
tion structure of a domain is then used to break the 
planning space into a set of smaller reasoning spaces 
(each constructing a plan for a particular region) 
and to determine how these spaces are searched. In 
191, a localized search algorithm is described, along 
with analytical and empirical results that demon- 
strate how exponential savings in search cost can be 
achieved. 

This paper comparea the relative strengths of lo- 
calization and abstraction as heuristics for reduc- 
ing planning search cost. In particular, localization 
is shown to subsume abstraction; localization can 
model abstraction “levels,” but also provides a more 
flexible framework for domain partitioning, with a 
broader range of planning benefits. Section 2 begins 
with a characterization of the planning search space 
and the relative search benefits achievable via local- 
ization and abstraction. Section 3 then provides a 
description of the localized reasoning frameworks of 
two planners - GEMPLAN [6, 7, 8, 91 and COL- 
LAGE, a new system that builds upon the ideas in 
GEMPLAN. Analytical and empirical results that 
describe the cost savings attainable by utilizing lo- 

‘Problem reduction (translation of a goal into subgoals) 
may also be used to decompose a planning problem [l]. How- 
ever, this kind of technique may more properly be viewed 
as a problem solving method rather than a search reduction 
technique, though search savings may occur as a result. 

1 1 2  



calization are also summarized, as well as tradeoffs 
in its use. Next, Section 4 shows how localization 
can encode the various commonly used methods of 
abstraction. Finally, Section 5 concludes with fur- 
ther discussion of the strengths and weaknesses of 
the two techniques. 

2 The Planning Search Space 
Consider a search space in which each node is asso- 
ciated with a plan and each arc is associated with a 
plan-construction operation that transforms a plan 
into a new plan (typically via the addition of actions, 
relations, or variable bindings). Such a tree directly 
reflects plan-space search, but can also be mapped 
onto state-space search. In the latter case, the plan 
P associated with a node is mapped onto the “state” 
reached after executing P, and each arc operation is 
mapped onto the action (i.e., the reasoning the plan- 
ner must perform in order to add that action) that 
takes it from one state into the next state. Given this 
characterization of planning search, we can see that 
the cost of both state-based or plan-based search can 
be improved in a t  least three ways: 

1. Lowering speration cost - i.e., reducing the 
cost of each arc or plan-construction opera- 
tion. Since most planning algorithms are NP- 
complete in the size of the plan, reducing plan 
size is one way of lowering operation cost. 

2. Operation ordering - Le., choosing a good or- 
der in which to apply plan-construction opera- 
tions. Goal-ordering is one example of this, as 
are other heuristics for determining how a plan- 
ning space is searched. A good operation or- 
dering may result in less backtracking, but may 
also improve solution quality. 

3 .  Reducing implicit search space size, typically 
by lowering the branching factor of the search 
space. Of course, decreasing necessary back- 
tracking via operation ordering may reduce how 
much of a space is actually searched. But limit- 
ing the applicable operations at  each node a b  
solutely reduces the total size of the space. 

Both localization and abstraction may be viewed 
as problem-solving heuristics for reducing planning 
search cost. Alternatively, they may be viewed as 
ways of reformulating or recasting a planning prob  
lem so that the cost of search required to solve that 
problem is reduced. Abstraction techniques explic- 
itly break the problem-solving process up into “ab- 
straction levels.” At each level, more information is 
added into the problem definition (e.g., actions are 
decomposed or preconditions are added) to create a 

more complex planning problem. Since abstraction 
levels inherently control the order in which pieces of 
the problem are tackled, it is a heuristic for operation 
ordering. In earlier stages of the reasoning process, 
only “higher” level operations, which involve high- 
level actions or conditions, are applied. This set is 
expanded as the problem and domain definition is 
expanded. Although abstraction also initially lim- 
its the set of applicable operations at  each search 
node, an inherent reduction of applicable operations 
is not a guarantee of the abstraction technique once 
the domain is fully expanded. Rather, it is the job 
of abstraction-derivation techniques to form abstrac- 
tion hierarchies that guarantee properties like mono- 
tonicity [4], which limit interaction between the ac- 
tions and states of the various abstraction levels. 

Rather than dividing a problem definition into ab- 
straction levels, localization divides a problem ac- 
cording to the inherent scope of its actions, proper- 
ties, and goals. A particular localization or domain 
decomposition provides a planner with a semantic 
definition of the scope of all domain actions and 
properties. Each region may be viewed as a “scope” 
of reference, with an associated set of actions, defi- 
nitions, goals, etc. As a result, a localization can be 
used to determine which domain actions and prop- 
erties interact, and which are independent. Local- 
ization then forms a valid basis for partitioning the 
planning search space into a set of smaller spaces 
(one for each region), for focusing the application of 
plan-construction operations to specific pieces of the 
plan, and for triggering those operations at appro- 
priate times. 

Moreover, unlike abstraction, localization can be 
used to encapsulate domain information based on 
any criterion, not just “abstractness.” The r e  
gion divisions are based on the particular qualities 
and scopes of the domain rather than a particu- 
lar “abstraction-inducing” technique such as oper- 
ator or state abstraction. Thus, abstraction-based 
localizations might be used, but also physically- 
based, process-based, or temporally-based partition- 
ings, which may be more compelling. 

Finally, and perhaps most importantly, localiza- 
tion allows for domain regions that overlap and in- 
teract. While it is often difficult to attain a clean 
partitioning into abstraction levels (often resulting 
in a collapse of levels or a great deal of interac- 
tion between levels), localization embraces the no- 
tion that real-world decompositions cannot be neatly 
decomposed and will naturally entail regional over- 
lap. Thus, the localization technique explicitly pro- 
vides methods for coping with regional interaction. 

In terms of the potential search benefits described 
above, localization can achieve all three: 

113 



1. 

2. 

3. 

3 

We 

Plan-construction operations are applied to 
much smaller regional plans. Thus, localization 
reduces operation cost. While abstraction may 
provide a way of initially working on smaller 
plans at higher levels of abstraction, ultimately, 
the scope of the planning algorithms becomes 
the most detailed plan. Thus, abstraction does 
little to partition the scope of reasoning and 
does not inherently improve operation cost. 

The localized search technique directs search 
flow so that only “relevant” operations are a p  
plied at each point in the reasoning process (Le., 
those operations relevant to regions whose plans 
have been modified). Thus, localization con- 
trols operation ordering. 

Since only region operations are applicable at 
each region search node, localization reduces 
search space size by limiting the branching fac-  
tor  at each search node. 

Localized Representation 
and Reasoning 

now exdain the localization techniaue by de- 
scribin its ‘instantiation in two localized plariners, 
GEM8LAN and COLLAGE. In both systems, a 
region R  is defined by a region description: 
< actiona(R),definitionr(R), conrtraintr(R),rrbngionr(R)> 

Each region R  is associated with a search tree, 
t r e e ( R ) ,  whose role is to construct a plan, p l a n ( R ) ,  
that satisfies all regional constraints, given available 
actions and definitions. Each plan is a partially or- 
dered set of actions. The set a d i o n s ( R )  defines 
a set of action types which are considered to be- 
long directly to R  and instances of which may occur 
within p l a n ( R ) .  (Note that p lan(R)  may also in- 
clude actions belonging to subregions of R . )  The 
set defini t ions(  R )  includes any definitions pertain- 
ing to activity in p l a n ( R ) .  The set cons t ra in t s (R)  
includes “constraints” that must be satisfied by 
plan( R ) .  Finally, subregions( R )  consists of regions 
belonging to R.2 

The regions comprising a domain may take on any 
structural configuration - they may be disjoint, form 
hierarchies, or even overlap. Semantically, a particu- 
lar decomposition defines the scope of domain prop  
erties; the scope of each definition and constraint 
associated with R  is p l a n ( R )  - which may be com- 
posed only of actions in R  and its subregions. It 
is the role of the domain describer to ensure that 

Section 3.1 describes the relationship between “MtiOM, 
definitions, and constraints” and more traditional p l d n g  
representations. 

these scoping semantics are correct; the planner as- 
sumes that they are. The only required criterion for 
domain decomposition is that each constraint and 
definition belong to a region that includes at  least 
the entire “scope of applicability” of that definition 
or constraint (but possibly more). 

As an example, consider the small construction 
domain depicted in Figure 1. It has been partitioned 
into regions that include the activities of an electri- 
cian and plumber. These regions include subregions 
that contain activities at specific walls. Each wall 
region would be associated with definitions and con- 
straints that are relevant only to the actions that can 
take place at that wall. In contrast, electrician (or 
plumber\ definitions pertain to all activity directly 
within e .  f r ic ian (plumber) ,  as well as all activ- 
ity a t  i t -  %-all subregions. Since wallA is shared 
by the rrician and plumber, both the electri- 
cal and rnbing constraints apply to the activity 
within I ..:A. The constraints directly associated 
with wai. + itself would probably include those re- 
lating to coordination of the plumber and electrician 
activities a t  that wall. The figure also shows search 
trees for these regions. Each tree is concerned with 
building a plan for its region that satisfies all re- 
gional constraints. The planning process may thus 
be viewed as a set of “mini-planners,” tied together 
by the structural relationships between regions. 

electrician 1 

elecbician plumber 

A A  

Figure 1: A Localized Construction Domain 

3.1 Localizing Traditional Planning 

One important distinction between the planning r e p  
resentation of GEMPLAN and COLLAGE and 
that of traditional planners is the encoding of do- 
main information in terms of “actions,” “defini- 
tions,” and “constraints” rather than STRIPS-like 

Represent at ions 

1 1 4  



operator descriptions. One reason for this is that it 
allows domain information to be more easily local- 
ized. In a traditional planning representation lan- 
guage, an “action description” is bound up with ac- 
tion preconditions and effects. The “definition” of a 
particular state predicate is essentially a side-effect 
of the set of action descriptions within the domain 
and is thus “distributed” throughout the domain 
description. Whether or not a literal P is true at 
some point in the plan is determinable by examining 
the actions within the plan, along with their defined 
preconditions and effects, and seeing whether they 
“combine” to achieve P. The goals that a traditional 
planner attempts to achieve are a combination of 
user-provided top-level goals and subgoals that are 
posted to fulfill action preconditions. 

In contrast, the GEMPLAN/COLLAGE frame- 
work separates the definition of actions from their 
preconditions and effects. Action-type definifions are 
simply descriptions of the action types themselves - 
an action “name” with a set of parameters. For in- 
stance, in a blocks world domain, pick(block) would 
define an action type, an instance of which is pick(a) .  
A state predicate is defined separately by an explicit 
predicate definition. In the GEMPLAN implemen- 
tation of the blocks world, the following definition 
of c lear(B)  is used:3 

s t r ips-der  i n i t  ion( clear(B1 , 
Caddrr(pick(Y) ,oa(Y,B)), 
adder(put(B,-).trur), 
deleter(put(,,B) ,true) 
deleter(pick(B),trur)l). 

A predicate definition includes a list of conditional 
adder and deleter descriptions. The first parameter 
of “adder” or “deleter” is an action type which adds 
or deletes the predicate, under the condition in the 
second parameter. For example, an action of type 
p i c k ( Y )  adds c lear(E)  if on(Y, B )  is necessarily true 
just before it, p u t ( E , - )  always adds clear(B), and 
put(-, B) or pick(B) always delete clear(B). Sepa- 
rating predicate definitions from actions descriptions 
allows actions and predicates to be individually lo- 
calized (see Section 4). It also makes conditional 
effects easy to describe; for example, that an action 
adds a particular literal P in some contexts and an- 
other literal Q in others. 

In the GEMPLAN/COLLAGE framework, ac- 
tion preconditions and top-level goals are also de- 
scribed as separate entities - they are explicitly de- 
fined as constraints. For example, in the blocks 
world domain description, we have: 

3Capitalized tokens (or the character “-‘I) represent vari- 
ables. Lowercase is used for constants. Thus, notation of the 
form p i c k ( X )  or pick(-)  is used to denoteany pick action with 
a single parameter. 

constraint  (precondition(pick(B) , clear(B)) 
constraint  (precondition(put ( X , B ) ,  clear(B) ) 

Such constraints can be easily localized. Also, note 
how the separation of precondition constraints from 
predicate definitions clearly distinguishes between 
necessary action preconditions and those conditions 
utilized only for describing conditional effects. 

Given a framework of actions, definitions, and 
constraints, planning may be viewed as “constraint 
satisfaction” rather than backwards and/or forwards 
chaining on state-based goals and conditions. In 
GEMPLAN and COLLAGE, a “constraint” is 
simply any property that the planner knows how 
to test and make true. The standard STRIPS-based 
algorithms form only a subset of the possible meth- 
ods of plan construction in GEMPLAN and COL- 
LAGE - many other kinds of constraint forms and 
satisfaction algorithms are provided by the two sys- 
tems. Any of these constraint forms may be used 
to encode domain properties, and all constraints are 
appropriately scoped by the localization structure of 
a domain. Thus, in many ways, both systems may be 
viewed aa general constraint-based reasoners rather 
than strictly as planners. 

3.2 Localized Search 
Once a domain has been localized, its regional struc- 
ture guides how localized search is performed. As 
described earlier, each t r ee (R)  is concerned with 
constructing a plan( R) that satisfies constraints( R) 
given actions(R),  de f i n i t i ons (R) ,  and the actions 
and definitions of all subregions (and subsubregions, 
etc.) of R. Each tree node is associated with the re- 
gion plan constructed up to that point in the search, 
and each tree arc is associated with a plan modifi- 
cation that transforms a region plan into a new re- 
gion plan. Upon reaching a node, the planner must 
choose which region constraint to check next. (Thus, 
an implicit branching factor in the search space is 
the set of all region constraints at each node.) If the 
chosen constraint is not satisfied by the plan at  that 
node, constraint satisfaction algorithms must be a p  
plied, resulting in a set of new region plans at the 
next level down in the tree. A constraint satisfac- 
tion algorithm typically adds new actions, relations, 
and variable bindings to a region plan, and may also 
generate new subregions. For example, in order to 
satisfy a precondition constraint, one option is to 
add an action and appropriate relations that estab- 
lish that action as an “adder” of the precondition. 

Because it is partitioned into regional search trees, 
localized search is more complicated than the tradi- 
tional global search utilized by most planners. The 
localized search algorithm described in [9] has two 
basic functions: (1) global correctness: making sure 

115 



that all constraints that need to be checked are 
checked and that appropriate shifts occur between 
between regional search spaces; and (2) global con- 
sistency: making sure that all of the plan fragments 
being constructed (especially those shared by more 
than one super-region plan) are consistent with each 
other. This second function is much like that of a 
distributed database and is ensured by updating all 
relevant plans for ancestor regions of R, each time 
search exits from t r e e ( R ) .  Global correctness is 
ensured, first, by making sure that all regions are 
searched at  least once, and second, by making sure 
that search eventually occurs for a region R when- 
ever R’s plan has been affected by some previous 
plan modification. GEMPLAN uses a fixed strat- 
egy for controlling search flow and consistency main- 
tenance, but COLLAGE allows for more flexible 
approaches. 

calized search control may be 
viewed as a TMS ..... e strategy for maintaining con- 
straint satisfaction - only “affected” constraints 
need to be rechecked. Unlike a true TMS, however 
(which also tries to capture “what affects what”), 
domain localization is a broad-brush heuristic strat- 
egy that need not be accompanied by perpetual 
and expensive reasoning to update those dependen- 
cies. The domain decomposition provides a “cut” at 
defining scope and interactions; the planner uses it, 
but never needs to verify it or update it. In this re- 
spect, localization provides the same level of heuris- 
tic information as abstraction, providing a “useful” 
partitioning of domain information. However, local- 
ization can encapsulate information based on many, 
perhaps mixed, criteria. Some regions may c a p  
ture physical structures, others may reoresent pro- 
cesses, and others may represent absrrxtion hier- 
archies within these or overlaid with :sese.  For in- 
stance, the construction domain of Figure 1 includes 
regions that are physically-based (the walls) as well 
as those that represent contractor “processes.” One 
might view localization aa having the ability to cap 
ture both “horizontal” &s well aa “vertical” decom- 
position. 

In some sense. 

3.3 Localized Search Benefits and 
Tradeoffs 

In [9] a detailed complexity analysis is provided that 
highlights the potential benefits and tradeoffs of lo- 
calized search. That paper also provides some ini- 
tial empirical results that support this theoretical 
analysis. This section summarizes these benefits and 
tradeoffs. 

Since the cost of localized search for a partic- 
ular domain is very dependent on the particular 
constraints, structure, and problem specification for 

that domain, the ‘general” complexity analysis de- 
scribed in [9] was performed on a somewhat ideal- 
ized domain scenario. The search cost of a global. 
non-localized domain was compared with that of the 
same domain, partitioned into a set of m subregions 
each of which overlaps by some factor L with an- 
other region g. An original set of n, constraints was 
partitioned among these m+ 1 regions. Table 1 sum- 
marizes provides the results of this analysis. Com- 
plexity results were calculated assuming that all con- 
straints were either constant, linear, quadratic, or 
exponential in cost relative to the size of the plan. 
The table also compares the cost of best-case or 
worst-case search. Best-case measures the cost of 
one path through the search space (no backtrack- 
ing), and worst-case mea-f:res the cost of the entire 
potential space. The terr.: 3 is the size of the final 
plan. The term nf is the number of potential fixes 
for each constraint. Finally, C is the cost of main- 
taining consistency, which is assumed to be O(mzk).  

These results show that localized search is nearly 
always better than non-localized search - in most 
cases much better. The only exceptions are 
constant-complexity best-case search (when there is 
no reduction in the amount of the space searched 
nor in constraint algorithm cost) or when the cost 
of consistency maintenance overshadows the cost of 
the search. The amount by which localized search 
wins over non-localized search is proportional to m 
(the amount of decomposition), but inversely pro- 
portional to mk (the amount of overlap). Thus, in- 
creased decomposition is always worthwhile, except 
for the cost of increased overlap. The gains of local- 
ized search become exponential as the complexity of 
the constraint algorithms increases and the amour 
of the space actually searched increases. These gar 
come from three sources, which correspond direc:~,. 
to the three factors described in Section 2: 

1. The cost of each arc - Le., operation cost. Even 
if the absolute size of the non-localized and 
localized search spaces are the same, expen- 
sive constraint algorithms are applied to much 
smaller plans in the localized case. 

2. The seamh heuristics provided by localization - 
Le., operation ordering. Because of the seman- 
tic information provided by a localized domain 
description, the most relevant constraints tend 
to be applied at  the right time, enabling a re- 
duction in the amount of the search space that 
actually needs to be searched. 

3. The size of the search space - i.e., branching 
factor reduction. This is- because only regional 
constraints are relevant at each node. 

116 



~~ ~ 

Table 1: Complexity Results 

Empirical tests were also carried out which bol- 
ster these results. In [9], several decompositions 
of a building-construction domain were compared, 
as well as the effects of varying the size of the ac- 
tual building plan constructed. In this domain, con- 
straint cost was fairly low (close to linear for most 
constraints) and there was no backtracking. Even 
so, the search cost of the best localization was less 
than 50% of the non-localized domain configuration. 
The results also show that increased localization pro- 
vides increased benefit, except for the added expense 
due to increased regional overlap. However, as also 
predicted by the complexity results, the detrimental 
effects of increased overlap become overshadowed as 
plan size and search space size increases. 

One of the focuses of the COLLAGE project is 
to flesh out our understanding of localized search by 
performing many more controlled experiments. The 
new COLLAGE search control architecture features 
a constraint-activation and consistency-activation 
agenda mechanism that allows for various aspects 
of the search strategy to be easily modified and re- 
configured. Using this architecture, we plan to test 
a suite of search strategies over a suite of prob- 
lem types that vary in the amount of backtrack- 
ing required, constraint algorithm difficulty, as well 
as domain localization structure and problem size. 
Finally, we also hope to come up with a localiza- 
tion learning approach that automatically discov- 
ers domain-dependent and domain-independent 10- 
calization heuristics. 

4 Modeling Abstraction With 
Localization 

In order to model traditional planning-based ab- 
straction methods in a localized framework, we must 
create “levels” of reasoning, representing incremen- 
tally more detailed descriptions of the domain. Re- 
ferring to the characterization of a region description 
in Section 3, we can see that this can be achieved by 
incrementally adding regions and/or subregion links, 
constraints, action types, and definitions. The ad- 
dition of this information can be done by a special 
search step that introduces the next “level” of rea- 
soning. Both GEMPLAN and COLLAGE already 

incrementally add regions during planning, and both 
systems access relevant domain information in such a 
way that makes incremental addition of other types 
of information trivial to acc~mmodate .~ In addition, 
the incremental addition of subregion containment 
relationships adds an interesting “twist” to the types 
of abstraction levels attainable; a region may be ini- 
tially visible to some super-regions and then incre- 
mentally become a subregion of additional regions, 
resulting in “mix-and-match” levels of abstraction. 

4.1 Operator Abstraction 
+- lntwnultlon r d d d  to tom I now Iwd of rbmtncllon 

plumb.r-lntmtlona 

wn#pr*W 

Figure 2: Operator Abstraction 
One of the constraint forms available in GEM- 

PLAN and COLLAGE is the decompose con- 
straint, which requires that actions of a specified 
type be [conditionally] decomposed into one of a 
set of possible patterns of interrelated subactions. 
Operator abstraction can be modeled in a localized 
framework by incrementally adding such action de- 

‘All domain informationaccessed by the plan-construction 
operations is represented and accessed in plan-relative fash- 
ion. As a result, new constraints, actions, regions, and def- 
initions can be “added” to a plan and thus become newly 
accessible to the reasoning mechanism. 

117 



composition constraints and, optionally, incremen- 
tally adding regions which contain the subactions at  
the “next level down.” Different degrees of interac- 
tion between “levels” may be achieved, depending 
on the localization configuration used. 

Figure 2 provides three sample configurations 
for modeling operator abstraction in the construc- 
tion domain of Figure l.5 In all three cases, an 
install action of the plumber is decomposed into 
two subactions at a lower level of detail, prep 
and inser t .  In configurationi, no wall sub- 
region exists. Instead, operator abstraction is 
achieved by simply adding a decompose constraint 
to plumber. In configuration?, the subaction 
types prep and insert and a subregion wallC con- 
taining them are also added, thus creating a new 
level that includes new action types and a new 
subregion. In coni iguration3, region wallC con- 
tains the decomposition constraint and subactions, 
but overlaps with plumber only at the point of 
the higher level action instal l .  Note how, in 
configuration?, the lower-level actions in wallC 
become subject to plumber’s constraints, introduc- 
ing potential interaction between “abstraction lev- 
els.* In coni iguration3, this interaction does not 
exist except at region plumber-inlentions. If only 
region plumber adds install actions, no planning 
interaction will occur once region wal lC is added 
(i.e., there will be no need to recheck the constraints 
in plumber) ,  thereby guaranteeing monotonicity in 
the reasoning process. For more discussion of mane 
tonicity and related properties, see Section 5. Also 
note how, in general, constraints may refer to actions 
at  mixed levels of detail. Unlike many hierarchical 
planners, GEMPLAN and COLLAGE allow both 
actions and their subactions to be present within a 
plan simultaneously. 

4.2 State Abstraction 
A localized framework can also model state ab- 

straction in several ways, depending on the desired 
effect. In Figure 3, three possible configurations are 
given in which various preconditions and definitions 
affecting the install action and its subactions are 
incrementally added. Coni igurat ion1 illustrates 
how action preconditions (or top-level goals) can be 
added on a per-action basis, by simply incremen- 
tally adding precondition (or goal) constraints. If we 
wished a specific predicate to be completely unavail- 
able until a certain “abstraction level” (achieving a 
“partitioned hierarchy” [4]), is predicate definition 
and all precondition or goal constraints that utilize 
that predicate would not be added until that “level” 

5The constraint syntax used in Figures 2 and 3 har been 
simplified for illustrative purposes. 

Figure 3: State Abstraction 

in the reasoning process is reached. Another option 
is to incrementally add available “lower level” action 
types that have been defined to be adders or deleters 
of a predicate. In this way, action effects (rather 
than just  -reconditions) may be incrementally added 
to the :.- :.a of reasoning. In coni iguration2, a lit- 
eral cis . l :e  cannot be “deleted” until the lower- 
level act .  - -, type prep is added to the domain. This 
next level also includes a new precondition for visual- 
ok (unused-sile), as well as a new definition for 
unused-site based on the lower level actions prep and 
inser t .  

One can achieve a strict, noninteracting par- 
tition of predicates and actions into levels (i.e. 
monotonicity), by utilizing the strategy depicted 
in configuration3. Here, the new region wallC 
is added which contains a new precondition con- 
straint, actions, and definitions a t  the next level 
down. In this case, region wal lC overlaps with re- 
gion plumber rather than being strictly contained 
within it. Thus, if we adhere to a regimen in which 
only region plumber adds actions of type install 
(and only region wal lC can add actions of type prep 
and inser t ) ,  a strict separation of effect would be 
achieved - changes within region wallC would nor, 
trigger search within plumber,  thereby guaranteeing 
monotonicity. 

118 



5 Discussion dered monotonicity, or those used by Christensen [2], 
could also be used within a localization framework. 

But an advantage of using a localized framework 
is that it can be used to capture much more than ab- 
straction. Depending on the domain, physically- or 
process-based localizations might reap even greater 
search benefits than abstraction-based localizations. 
Even though “levels” of reasoning can be modelled, 
they form only a small portion of the structuring 
capabilities of localization. While properties such 
as ordered monotonicity may be useful, they come 
at a price. Since monotonicity requires noninterac- 
tion between levels, it may result in a collapse of 
the hierarchy. Indeed, this might be fairly common, 
since real-world problems rarely lend themselves to 
pure refinement strategies. In a localized framework, 
there is no need to collapse levels or regions into each 
other if they are not strictly independent. A local- 
ization need not be organized hierarchically and does 
not necessarily have to engender separate planning 
“phases.” Interactions are handled as a basic mech- 
anism of the search process which directs the flow of 
reasoning, without necessarily invoking backtracking 
into a “previous level” of reasoning. Finally, in a lo- 
calized framework, actions, definitions, constraints, 
and regions may be incrementally added in flexible 
ways. “Levels of detail” may be mixed among con- 
straints. The addition of subregion relationships can 
incrementally and selectively increase the scope of 
constraints. 

Of course, just as for abstraction, the trick is to 
find a good localization that reaps as many search 
benefits as possible. As discussed earlier, a research 
focus in COLLAGE is automatically learning such 
localizations. The key is to find a decomposition 
that balances decomposition and interaction. In- 
creased decomposition results in finer-tuned local- 
ization of constraints, but also results in increased 
regional overlap and accompanying increases in con- 
sistency maintenance costs and potential “thrash- 
ing” between regional search spaces. The tradeoff 
between locality and overlap mirrors the abstraction 
tradeoff between increasing the number of abstrac- 
tion levels and increasing the amount of interaction 
between levels. 

Admittedly, the cost of dealing with regional over- 
lap and the complexity of localized search is a limita- 
tion of the localization technique. Because abstrac- 
tion simply partitions the search into ever-growing 
levels of detail, it can still use global search meth- 
ods. The management of regional search in a local- 
ized framework requires more work. Other problem 
reformulation techniques may also be more feasible 
in an abstraction-based framework, where the prob 
lem may be “reformulated” before search proceeds at 
each level. However, this might also be accomplished 

The primary point of this paper has been to show 
that localization is more general than abstraction - 
it can capture the same kind of heuristic informa- 
tion, but can also express other forms of encapsula- 
tion, with potentially greater benefits. This section 
discusses the impact of localization on such prop 
erties as monotonicity and tries to shed some light 
on other plusses and minuses of localization and ab- 
straction. 

In [4], several properties are described that pro- 
vide a useful basis for the formation of abstrac- 
tion hierarchies. These include the upward solu- 
tion property, monotonicity, and ordered monotonic- 
aty. By constructing abstraction hierarchies in a 
way that ensures these properties, guarantees can 
be made about the completeness of an abstracted 
search space and the amount of backtracking that 
will be necessary. In particular, the upward solution 
property guarantees that decomposing the problem 
into abstraction levels will not remove completeness 
from the search space. Monotonicity properties ad- 
ditionally remove the need to backtrack into higher 
levels of the reasoning space. 

If localization is used to represent abstraction, 
what effect does this have on these properties? Does 
strictly controlling the ordering of constraint appli- 
cation remove possible solutions? Once actions, con- 
straints, and regions are added into the domain spec- 
ification, will backtracking to a point in the reason- 
ing space before this addition be required? These 
are precisely the kinds of questions that localization 
addresses. A localization structure captures the de- 
fined semantics of interaction between actions and 
constraints. If two constraints do not apply to the 
same pieces of the growing plan, they do not inter- 
act and their relative constraint ordering does not 
make a difference. Likewise, if actions, constraints, 
or regions incrementally added to the planning prob 
lem do not cause triggering of previously defined 
constraints, a pure .refinement strategy is possible 
- no backtracking will be necessary. And even if 
the regional configuration of a localization does not 
by itself guarantee independence, search heuristics 
(that encode knowledge about such guarantees) can 
be used to block unnecessary backtracking or con- 
straint rechecking. 

In sum, if localization is used to capture exactly 
and only the forms of abstraction available in the 
various systems outlined in [4], then localization 
will manifest the same properties as those systems. 
Guarantees about such things as monotonicity are 
a function of the abstractions or localizations cho- 
sen for a specific domain. The techniques used by 
Knoblock [3] to learn abstractions that guarantee or- 

1 1 9  



in a localized framework via incremental modafica- 
tion of domain constraints, actions, and definitions. 

Finally, localization is also applicable to other 
kinds of tasks. Localization can be used to encap 
sulate any kind of domain information - not just 
STRIPS preconditions, goals, and action decompo- 
sition. The technique can be used by any kind of 
reasoning that can be cast in terms of constraints a p  
plied to a partitionable frame of reasoning. Methods 
based on localized search have already been incorpo- 
rated into a scheduler [13], another planner that uses 
abduction as the primary plan-construction mecha- 
nism [lo], and an image understanding framework 
[14]. Localization can also aid replanning and plan 
reuse. If certain pieces of a plan become faulty 
during run-time, !ocalization provides a good first- 
cut at which pieces of the plan can be reused and 
which consrraints must be rechecked. Localization- 
based replanning and reuse is another focus of COL- 
LAGE. 

Acknowledgments 
Thanks to Steve Minton, Rich Keller, Andrew 
Philpot, Peter Riedland, John Allen, Smadar 
Kedar, Mark Drummond, and the referees who have 
reviewed this paper for their useful comments and 
encouragement. 

References 
Bresina, J., Marsella, S. and C. Schmidt. “Pre- 
dicting Subproblem Interactions,” Technical 
Report LCSR-TR-92, LCSR, Rutgers Univer- 
sity (February 1987). 

Christensen, J. “A Hierarchical Planner that 
Generates Its Own Hierarchies,” in Proceedings 
of the Eighth National Confennce on Artificial 
Intelligence (AAAISO), Boston, Massachusetts, 

Knoblock, C.A: “Learning Abstraction Hierar- 
chies for Problem Solving,” in Seventh Inter- 
national Workshop on Machine Learning, pp. 

pp. 1004-1009 (1990). 

923-928 (1990). 

Knoblock, C.A., Tenenberg, J.D., and Q. 
Yang. “A Spectrum of Abstraction Hierarchies 
for Planning,” Proceedings of the 1990 Work- 
shop on Automatic Genemtion of Approzima- 
tions and Abstractions, Boston, Massachusetts, 
pp.24-35 (1990). 

Korf, R.E. “Planning as Search: A Quantita- 
tive Approach,” Artificial Intelligence (33,1), 
pp. 65-88 (1987). 

Lansky, A.L. “A Representation of Parallel Ac- 
tivity Based on Events, Structure, and Causal- 
ity,” in Reasoning About Actions and Plans, 
M. Georgeff and A. Lansky (editors), Morgan 
Kaufmann, pp. 123-160 (1987). 

Lansky, A.L. “Localized Event-Based Reason- 
ing for Multiagent Domains,” Computational 
Intelligence Journal, Special Issue on Planning 
(494) (1988). 

Lansky, A.L. “Localized Representation and 
Planning,” in Readings in Planning, J. Allen, J. 
Hendler, and A. Tate (editors), Morgan Kauf- 
mann (1990). 

Lansky, A.L. “Localized Search for Multiagent 
Domains,” Proceedings of the Twelfth Inter- 
national Joint Conference on Artificial Intelli- 
gence (IJCAI-91), Sydney, Australia, pp. 252- 
258 (1991). 

Missiaen, L. “Localized Abductive Planning for 
Robot Assembly,” in Proceedings of the 1991 
IEEE Confennce on Robotics and Automation, 
pp. 605-610 (April 1991). 

Sacerdoti, E. “Planning in a Hieararchy of Ab- 
straction Spaces,” Artificial Intelligence, 5, pp. 
115-135 (1974). 

Wilkins, D.E. Practical Planning, Morgan 
Kaufmann Publishers (1988). 

Personal communication with M. Zweben about 
the YXSA Ames AI Research Branch schedul- 
ing y ~ w . t .  

Persc-.:i1 communication with Framentec A p  
plied .Lrtificial Intelligence Group, Cedex 16, 
92084 Paris La Defense, France. 

120 



Levy 

- y s  ---e Irrelevance in Problem Solving 
Alon Y .  Levy 

I ’  / ‘-7 Knowledge Systems Laboratory i / 

Stanford University f1 0 r - ’  / 
701 Welch Road, Bldg. C, Palo Alto, CA 94304 

alevy@cs.stanford.edu 

Abstract 
The notion of irrelevance underlies many different 
works in AI, such as detecting redundant facts, 
creating abstraction hierarchies and reformulation 
and modeling physical devices. However, in order 
to design problem solvers that exploit the notion 
of irrelevance, either by automatically detecting 
irrelevance or by being given knowledge about ir- 
relevance, a formal treatment of the notion is re- 
quired. 
In this paper we present a general framework for 
analyzing irrelevance. We discuss several prop- 
erties of irrelevance and show how they vary in 
a space of definitions outlined, by the framework. 
We show how irrelevance claims can be used to 
justify the creation of abstractions thereby sug- 
gesting a new view on the work on abstraction. * 

Introduction 
Meta-level reasoning has received a lot of attention 
from researchers in artificial intelligence as a means 
of guiding problem solvers in their search for solu- 
tions [Hayes, 1973; Genesereth, 1988; Smith and Gene- 
sereth, 1985; Clancey, 19831. A common of meta- 
level strategy is to avoid using knowledge that is ir- 
relevant to the goal at  hand. In fact, the notion of 
irrelevance has been a common theme in many re- 
search works, but its formal analysis has received at- 
tention only from few researchers such as Subramanian 
and Genesereth [Subramanian and Genesereth, 1987; 
Subramanian, 19891. The ability to give a problem 
solver advice about what parts of a knowledge base are 
irrelevant to a specific problem solving goal is a power- 
ful method to reduce its search. For example, consider 
a domain in which we are trying to find routes between 
cities in the country, using flights, trains and busses. 
For some goals, we might want to advise the problem 
solver that rules and facts about flights are irrelevant, 
either because the minimal price of flights is known to 
be greater than is required for the specific goal or be- 
cause we know that flights will not yield an optimal 
solution. By giving this advice, we significantly reduce 

the size of the search space explored by the problem 
solver. 

The notion of irrelevance also plays a key role in 
work on abstractions and change of representation. In- 
tuitively, when we want to create a simpler or abstract 
representation we remove some irrelevant detail. If the 
removed detail was indeed irrelevant then the solution 
to the problem in the abstract theory will map back to 
a solution in the original theory. Therefore, if we can 
provide the system with knowledge about irrelevance 
or relative irrelevance of knowledge, the system can 
exploit it to automatically create abstractions. Meth- 
ods for mechanically detecting relevance can be used 
to automatically create abstractions. 

However, both in order for a user to be able to 
state such claims to a system in a principled man- 
ner and for the system to make proper use of given 
claims, a better analysis of the notion of irrelevance 
in problem solving is required. This paper describes 
a general framework for analyzing the notion of irrel- 
evance. We define a space of possible definitions of 
irrelevance by identifying several axes along which ir- 
relevance claims differ. Several important properties of 
irrelevance concerning their usage in problem-solving 
are outlined and we show how varying the definition 
of irrelevance in our space affects the satisfaction of 
these properties. Next, we discuss how irrelevance 
claims can serve as justifications for creating an ab- 
straction. The case of irrelevance of a distinction be- 
tween properties (represented as predicates) is exam- 
ined in detail and we show how such a claim serves as a 
justification for redicate abstraction [Plaided, 1981; 
Tenenberg, 1987f: 

This framework makes several contributions. First, 
it clarifies the issues involved in the notion of irrele- 
vance therefore enabling us to better exploit the notion 
in works that rely on it, such as the work on detect- 
ing redundant facts or creating abstraction hierarchies. 
The properties of irrelevance that we outline provide 
guidance in building a system that incorporates such 
claims. Giving precise definitions of irrelevance for- 
malizes the problem of automatically deducing irrele- 
vance facts, thereby enabling us to automatically cre- 

1 2 1  



ate abstractions, based on deduced irrelevance claims. 
Moreover, since our framework provides a language to 
express knowledge about irrelevance, we can use this 
language to express knowledge about the domain that 
can help reduce the size of the search or justify creating 
an abstraction. 

Preliminaries 
Assume our theory of the domain is represented by a 
knowledge base of first order predicate calculus formu- 
las, A. A problem solving goal (or query) is repre- 
sented by a formula $J. The goal is to find whether tj 
is implied by A (or if $ has free variables, we want 
to know which assignments to the variables result in 
a formula that is entailed from A.). Our aim is to 
identify facts that are irrelevant to 11 in order to re- 
duce the search space generated for $. Formalizing 
the concept of irrelevance can be done in several levels. 
For example, one can formalize irrelevance in terms of 
the models of A and $, i.e., a semantic level analy- 
sis. Irrelevance can also be analyzed in terms of the 
facts in the theory A, a so called meta-theoretic analy- 
sis [Subramanian, 19891. Alternatively, one can give a 
proof-theoretic analysis of irrelevance, in terms of the 
actual set of derivations the problem solver can explore 
in the search to solve $J. Although these levels are by 
no means independent, it is important to distinguish 
between them when defining irrelevance or comparing 
between definitions. 

The goal of this paper is to define notions of irrele- 
vance that enable us to optimize actual problem solv- 
ing. Therefore, we analyze irrelevance from the sys- 
tem's view of the problem-solving process which is a 
proof-theoretic one. The system does not actually see 
the world as the user sees it nor does it see the con- 
ceptualization of the world. Instead, it sees the set of 
symbols used to describe the domain and the set of 
derivations it can generate. 
Example 1: Suppose we are using a resolution thee  
rem prover on a knowledge base in clause form'. Con- 
sider the following two theories: 

Tz = ( 9 ) .  
TI and Tz are satisfied by the same set of models. In 

each the value assigned to f does not affect the value 
of g, and therefore we might consider f to be irrelevant 
to g. However, in TI, the theorem prover will have to 
resolve on the symbol f to derive g, and therefore as 
far as it is concerned, it can't ignore the symbol f. I 

Note that we are not claiming that irrelevance rela- 
tions in the domain are not useful to control problem 
solving; quite the contrary. Most irrelevance facts are 

'For clarity, in this document we do not use clause form 
notation but assume the problem solver gets formulas in 
clause form. 

based on properties of the domain. However, a rele- 
vance relation in the domain will only be useful if it is 
reflected in the repreientation. 

In particular, for a problem solver to exploit irrel- 
evance claims, the following properties of irrelevance 
claims will be of interest. Assume IR(+, 3 ,  A) denotes 
that the fact (or set of facts) + is irrelevant to the goal 
$ with respect to the theory A.  
0 What can the problem solver do given the irrele- 

vance claim? Can it ignore a fact that is deemed 
irrelevant? Can it ignore any fact that contains it as 
a subexpression? 

If Z R ( & , $ J , A )  
and Z R ( & , $ , A )  hold, does that imply that 
Z R ( { 4 1 , 4 2 } , $ , A )  holds? If so, we can use all the 
relevance claims that are available to us at a given 
instant. However, if not, we can only use one at a 
time, and then we must check that the others still 
hold in the resulting theory. 

0 Is irrelevance a monotonic property? Le., if we add 
more facts to the knowledge base, can irrelevant facts 
become relevant or vice versa? 
Does the irrelevance of a subject imply the irrele- 
vance of a subject which is syntactically related to 
it? E.g., Does ZR(qb,$ ,A)  imply Z R ( - + , $ , A )  or 
IR(4 V 41, $, A ) ?  Such properties will enable us use 
a given set of irrelevance claims to deduce additional 
ones. 

0 Can irrelevance claims be found automatically by 
examining the KB? 
An important issue in a definition of irrelevance is 

the subjecf of irrelevance, i.e., the type of entity being 
deemed irrelevant to the goal. So far we discussed only 
the irrelevance of a fact (or set of facts) to a problem 
solving goal, but the subject may be any kind of entity 
in the representation, such as the objects-constants, 
predicate-symbols and functions. The irrelevance sub- 
ject can also be more abstract such as a decision to 
distinguish between a set of predicates or objects in 
the representation. The following is an example of the 
irrelevance of a predicate distinction. 
Example 2: Consider the knowledge base with the 
following facts. 

rl : SporfsCar(z) =+ V e h i c l e ( z )  
r2 : F a m i l y C a r ( z )  =j V e h i c l e ( z )  
r3 : SportsCar(z) HighRiskZnsurance(z)  
r4 : F a m i l y C a r ( z )  j -.ISportsCar(z) 
rg : F a m i l y C a r ( C a m r y )  

In order to solve the query V e h i c l e ( z ) ,  the distinc- 
tion between the relations Sportscar and FamilyCar 
is irrelevant. Intuitively, all that matters for the proof 
is that z is some kind of car. Therefore, we can re- 
move the distinction in the re resentation by predicate 
absfraction [Tenenberg, 1987[ We express the theory 
using an abstract predicate, Car, as follows: 

Do irrelevance claims add up? 

1 2 2  



s1 : Car(x) 3 Vehicle(x) 
s2 : C a r ( C a m r y )  

rl and rz were abstracted to S I ,  while 7-5 was ab- 
stracted to s2. 1-3 on the other hand w a s  a rule specific 
to SportsCar, because 
F a m i l y C a r ( x )  3 H i g h  R i s k  Insurance( x) 
does not hold, and therefore we cannot abstract it to 
Car( x )  =+ H i g h  R i s k  Insurance( x). 
Consequently, it is removed from the theory. Simi- 
larly, r4 is a formula that distinguishes between the 
relations F a m i l y C a r  and SportsCar and therefore is 
removed from a theory that ignores the distinction be- 
tween these relations. I 

A final issue that factors into a definition of irrele- 
vance is the space of possible changes of the representa- 
tions and the theory (or weakenzngs of the theory [Sub- 
ramanian and Genesereth, 19871) we are considering in 
order to remove the irrelevancy. In example 1, we only 
considered changing the theory by removing facts and 
therefore we could not justifiably say that f is irrele- 
vant to g .  However, had we considered changing the 
theory by adding some of its logical consequences (e.g., 
g), we could deem f irrelevant to g .  In example 2, the 
irrelevancy was removed by predicate abstraction, i.e., 
replacing the predicates F a m i l y C a r  and Spor tsCar  
by an abstract predicate Car. 

A Space of Irrelevancies 
To. capture the various properties of irrelevance we de- 
fine a space of possible definitions of irrelevance. The 
space of definitions revolves around the set of possible 
derivations of the goal. Let A be a knowledge-base, $ 
be a goal and V be the set of derivations of I I ,  from 
A. A definition of irrelevance of 4 (which can be any 
irrelevance subject) to + is composed of the following 
choices: 

A l .  Defining irrelevance of 4 with respect to asingle 
derivation, D E V. 
A2. A subset VO of V over which to quantify A l .  
A3. The method of quantification over VO, i.e., ex- 
istentially or universally. 
Formally, if D is a derivation of a goal $ from a 

knowledge base, A, we denote the choice for A1 by 
Zr(4,+, D), Le., that 4 is irrelevant to the derivation 
D of the goal $. If 0 is a set of facts, Zr(0, +, D) holds 
if I T ( & ,  4,  0) for all 4i E a. 
Definition 3: Let VO be a set of derivations of a 
goal + from the knowledge base A2. 4 is said to 
be weakly irrelevant to + with respect to VO, de- 
noted by W I ( 4 ,  +,V0)3, if Ir(4, $, D) holds for some 

'If $ is a set of goals (e.g., a goal with free variables) we 
consider a set of derivations for every element of $. The 
definitions below hold if they hold for every element of $. 

'Note that the knowledge base A is implicit in the third 
argument of W I  and SI. 

D E VO. 4 is said to be strongly irrelevant, denoted by 
SI (4 ,  $,DO), if Ir(4, $, D) holds for every D E DO. I 

Note that in Definition 3, the knowledge base, A 
does not appear explicitly in WZ (SI), but is implicit 
in the set 270. For every choice of Zr and of DO, we get 
a definition for weak and strong irrelevance. Except 
for VO = V ,  examples of VO include the set of all rnin- 
imal derivations4, or all derivations bounded by some 
resource constraints. The following example clarifies 
some of these distinctions. 
Example 4: Consider a knowledge base with the fol- 
lowing rules: 
pi : E ( % )  Q ( z )  
rz : N z )  * Q ( x )  
r3 : P(+)  * Q ( z )  
r4 : E ( z )  3 P ( z )  
p5 : Q ( z )  3 P ( z )  

0 \  
/ \ 

Figure 1: Search space for a goal Q ( x )  

The knowledge base also contains a set of ground 
facts but only for the predicate E. Figure 1 shows the 
possible derivations that can be generated for Q from 
this theory. Suppose we define Zr(r,g, D) to hold if 
the rule r does not appear in the derivation D. Let V 
be the set of all derivations of Q(CZ)~. WZ(r3, &(a) ,  V )  
holds since whenever Q(a) is derivable, there will be 
a derivation of &(a) using only r1. S I ( r z , Q ( a ) , V )  
holds because t-2 cannot be part of a proof of &(a).  
SZ(rs,Q(a),P) does not hold, however, if we con- 
sider the set of non-redundant derivations Vo6, then 
SZ(r5, Q(a), DO) holds. I 

Irrelevance of a Fact 
In this section we briefly consider the case in which the 
relevance subject is a single fact, and show how vary- 
ing the choices for Al-A3 affects the properties of the 
resulting irrelevance claims. The definitions consider a 
specific problem solver, hence our discussion assumes 
we are using resolution theorem prover. A derivation 

'Given some criteria of minimality of deductions. 
'which will be empty if E(a) is not in the knowledge 

6A derivation tree is redundant if it has  two identical 
base. 

nodes nl and nz such that nl is an ancestor of nz. 

1 2 3  



is a resolution tree of clauses, where the goal clause 
(or the empty clause in case of a refutation proof) is 
the root, and the ch!idren of every clause are the two 
clauses that were resolved in order to get it. The leaves 
of the tree are clauses from the knowledge base, and 
they are denoted by Base (D) .  

Consider three choices for A l .  In the first, a fact 
is irrelevant to a derivation of the goal if it is not one 
knowledge-base facts used in it: 
Definition 5: Zrl(4,11,, D )  if q~ 

is irrelevant to 
a derivation if it appears nowhere in the derivation: 
Definition 6: Zrz(+,$,  D) iff there does not exist a 
substitution u such that 4~ is a subclause of a clause 
in D. I 

Subramanian [Subramanian, 19891 defines 4 to be 
irrelevant to 11, with -,-spect to a theory A, if there is 
a subset of A that -11s $ but is non-committal on 
4. In our space, we 

Definition 7 :  Zrj ~ , t j , D )  if Ease(D) 4 and 
E a s e ( D )  -4. I 

Using Zrg, for a refutation resolution theorem 
prover, WZ(4, $, V) is equivalent to the definition 
given in [Subramanian, 19891. 

Figure summarizes the different properties that hold 
for the definitions described above. The following show 
how the properties of weak irrelevance differ from those 
of strong irrelevance. 
Observation 8:  Whenever irrelevance adds up on a 
single derivation, it will add up for strong irrelevance, 
i.e., if 

I ~ ( @ I , + , D )  A I r ( @ z , + , D )  =t- Ir({@1,@2),g9D) 

B a s e ( D ) .  I 
A stronger definition requires that 

L I  formalize this as follows: 

hold for any D, then for any choice of 'DO, 

This property does not hold for weak irrelevance. I 
Observation 9:  The converse holds for weak irrele- 
vance too, i.e., whenever 

Ir({@i ,@z} ,+ ,  D) =+ I ~ ( @ I ,  +, D )  A Ir(@2,tD, D )  
holds for any D, then for any choice of DO, 
wI( {ai, @2) ,  d ~ ,  'Do) + ~ I ( @ I ,  +, 'Do) A w1(@2, +, Do) 

SI (  { @ I ,  @2) ,  4, 'Do) + S ~ ( @ I ,  4, Do) A s I ( @ 2 ,  +, 'Do)  

I 
Observation 10: For any definition of Zr such that 
Zr(&,$J,D) j Zrl(d,$,D), if we add facts to the 
knowledge base, irrelevance can change as follows. A 
fact that was  weakly irrelevant will still be weakly ir- 
relevant. A fact that was strongly irrelevant will be 
at least weakly irrelevant. A fact that was not weakly 
irrelevant might become weakly irrelevant. I 

PI: WZ(4, G,V)  implies that A \ 4 I- 11. 
Pa: WZ(4, 11, V ) implies that the problem solver 

can ignore any derivation that contains $. 
P3: WZ(+,$,V) implies that the problem solver 

can ignore any derivation that contains 
$ as a subexpression. 

Zr(41,11,D)Azr(4z,~,D) * 
{a11 4 2 )  I9,D). 

Ir(d1, $, D) A (41 
Ir(42, $, D). 

1441, $ 9  D) 3 w41, 11, D). 

P,: Adding up - 

Ps: Transfers through equivalence - 
4 2 )  * 

PF,: If 4 is a subclause of 41, then 

Figure 2: Properties of Irrelevance 

Deducing Irrelevance Claims 
Varying the definition of irrelevance has drastic ef- 
fects on the ability to automatically derive irrelevance 
claims. Given a knowledge base A and a goal $, we 
would like to derive all (or part of) the facts in A that 
are irrelevant to 11. In general, looking at the whole 
knowledge base to determine irrelevance will be more 
costly than solving the query. A more interesting ques- 
tion is whether irrelevance claims can be derived by 
looking at only a small and stable part of the knowl- 
edge base. For example, in example 4, we were able to 
determine irrelevance by merely looking at the struc- 
ture of the proof space created by the rules, regardless 
of the specific ground facts for the predicate E. 

We examine this question for knowledge bases com- 
prised of a set of Horn rules with no function symbols 
(Datalog, [Ullman, 1989)), and a database of ground 
atomic facts. We distinguish between two sets of pred- 
icates in the knowledge base, the edensional predicafes 
(EDB predicates) which are those. that appear only 
in the database and in antecedents of rules, and the 
infensional pndicafes (IDB predicates) which are the 
predicates appearing in the consequents of the rules, 
i.e., the predicates that are being defined by the EDB 
predicates and the rules. A query is an IDB predicate, 
i.e., to find all the derivable facts for that predicate. 
Every derivable instance of the goal has a (perhaps 
more than one) derivation tree. A derivation free is 
a tree consisting of goal-nodes and rule-nodes. A goal 

1 2 4  



node is labeled by a ground atom, and it has  a single 
child, which is an instantiated rule-node. The head 
of an instantiated rule-node is identical to its parent 
goal-node. A rule-node has a child goal-node for each 
one of its subgoals. The leaves of a derivation tree are 
goal-nodes labeled by ground atoms from the EDB. A 
derivation is not minimal (or redundant) if there are 
two identical goal-nodes n1 and n2, such nl is an an- 
cestor of n2. A rule r is irrelevant to a derivation D 
(i.e., Zr(r ,$ ,D))  if none of the rule nodes in D are 
instances of r (note that this is equivalent to Irl and 

The question we address is the following. Given a set 
of rules, P, a query q and a definition of irrelevance, 
can we determine whether a rule r E P is irrelevant 
to query for any possible set of ground facts in the 
knowledge base. We consider two choices for A2, the 
set of all derivations of the goal q ,  denoted by I), and 
the set of all minimal derivations, VO. 

Finding irrelevant rules enables us to significantly 
prune the search space for the query. In exam- 
ple 4,  rule r2 will not appear in any derivation of 
Q,  therefore SI(rz,Q(z),D) holds. 7-5 will appear 
only in redundant derivations of Q and therefore 
SI(r5,Q(z),Do) holds. Since &(I) can always be de- 
rived using either r1 or (r3,  r4}, both WZ(q,Q(z),D) 
and WZ( { r3, r4}, &( z), D) hold. Consequently, iden- 
tifying the various kinds of irrelevance can enable us 
to compute Q using only r l .  Considering constraint 
literals in the rules enables us to derive additional ir- 
relevance claims: 

Ira). 

Example 11: Consider the following knowledge base: 

si : Q(z, Z )  A Qi(z, Y) A I < * 
sz & ( z ,  
s3 : Ei(z, Y) A 2 < 3 * &(I, Y) 
s4 : &(z, Y) A 

If the query is P(z, y), all rules are relevant. However, 
if the query is P ( z , y )  h (y < l) ,  then s2 is strongly 
irrelevant, i.e., SI(s2,  P ( z ,  y) A (y < l),D). U 

P(zl Y) 
A Qi(zj Y) A 2 < Y 3 P(zl Y) 

> 1 * Qi(z, Y) 

Finding all rules which are weakly irrelevant, i.e., 
WZ(r, g, D), is precisely the rule redundancy problem 
shown to be undecidable by Shmueli [Shmueli, 19871. 
Consequently, determining WZ(r, g, DO) is also unde- 
cidable. For strong irrelevance, if the rules contain 
no constraint literals and no object constants, deter- 
mining S l ( r ,  g, DO) is equivalent to the rule reachabil- 
ity problem that has an easy polynomial time solu- 
tion [Kifer, 19881. [Levy and Sagiv, 19921 gives an al- 
gorithm for detecting SI ( r ,  g, DO) and SZ(r, g, D) even 
when constraint literals are present. It also establishes 
an exponential-time lower bound on the problem of 
determining S l ( r ,  g, Do). 

Using Irrelevance to Justify 
Abstract ions 

Much of the work in AI on creating abstraction hierar- 
chies relies on the intuition that by creating an abstract 
theory we are removing some irrelevant detail. If the 
detail removed is indeed irrelevant, then a solution to 
the problem in the abstract theory will map back to 
a solution in the original theory (also referred to as 
the ground theory). Otherwise, we will have to back- 
track between abstraction levels. Although this has  
been the motivation underlying work on abstractions, 
the formal connection between irrelevance and abstrac- 
tions has  received little attention (e.g., [Subramanian, 
19891). For example we can view predicate abstraction 
as being justified by the irrelevance of a distinction be- 
tween predicates; object aggregation can be justified 
by irrelevance of a granularity distinction. Identifying 
abstraction with the notion of irrelevance offers several 
advantages: 

We make explicit what is being abstracted (i.e., the 
subject of irrelevance). 
We make clear the strength of the justification for 
the abstraction (by the strength of the type of irrel- 
evance claim that holds). 
We formalize the problem of automatically creating 
abstractions by translating it to the problem of au- 
tomatically finding irrelevance claims. 
In this section we briefly discuss how irrelevance 

claims that are justifications for abstractions can be 
formulated in our framework. We identify several ir- 
relevance subjects that account for many abstractions 
discussed in the literature. As a consequence we get 
an expressive language to state knowledge about the 
domain that can affect the creation of abstractions. 
We define a notion of irrelevance that best justifies ab- 
stractions and mention several weaker notions. 

The first assumption underlying a formalization of 
irrelevance is that removing irrelevant detail should 
not enable us to reach new conclusions about the set of 
goals we are interested in, i.e., any conclusion reached 
in the abstract theory should be an abstraction of  one 
in the base theory (this is also known as a TD property 
of abstractions [Giunchiglia and Walsh, 19911 or the 
downward solution property [Tenenberg, 19871). The 
justification for this claim is that by removing irrel- 
evant detail, we are effectively ignoring some of our 
knowledge, and therefore, we can not come to new 
conclusions7. For example, when we remove some ir- 
relevant detail in a planning problem (e.g., action pre- 
condition), if the resulting abstract plan can not be 
mapped back to a base-level plan, the detail we have 
removed was not truly irrelevant to the problem8. Sec- 

'As long as the our reasoning has no form of non- 

'Note that this does not necessarily mean that the ab- 
monotonicity. 

straction is not useful! 

125 



ond, the abstract theory should not prevent us  from 
solving the goal, i.e., if the original theory had a so- 
lution to the goal, then the abstract one should too. 
Finally, in order for the abstraction to be computa- 
tionally effective, the solutions that are preserved by 
the abstraction should be the cheaper ones. 

These criteria are naturally formulated in our frame- 
work. Recall that in order to define irrelevance of a 
subject a, we must give a definition for Zr(a, $, D), 
i.e., when the subject Q is irrelevant to a derivation D. 
Given a theory A, we denote the abstract theory re- 
sulting from removing the irrelevancy a by !,(A). For 
example, if a is a distinction between predicates, f a ( A )  
is the theory resulting from predicate abstraction. The 
exact form of f a ( A )  is discussed in the next section. 
We base our definition of Zr on a mapping ha from the 
derivations of $ in A, denoted by VI, to the derivations 
of fa($) in f a ( A ) ,  V2. The only requirement from ha 
is that it is onto V2. ha need not be a total mapping on 
VI, i.e., there might be derivations of 4 that will not 
be mapped to the abstract theory, and it need not be 
1-1. Other constraints on h, will yield stronger forms 
of irrelevance and therefore stronger justifications for 
the abstraction, (for example, ha will be called a sim- 
plifying mapping if for any D E VI, the cost of h ( D )  is 
no more than the cost of 0'). Given h a ,  Zr(a ,$ ,D)  
is defined as follows: 
Definition 12: Zr(a,$,D) is true iff ha(D) is not 
empty. I 

Note that in this definition h, is dependent on a 
and $. Definitions of weak and strong irrelevance are 
obtained by quantifying the definition of Zr over a cho- 
sen set of derivations. The following states that the 
first two requirements of an abstraction are satisfied 
by weak irrelevance. 
Observation 13: If 'DO is a set of derivations in VI, 
and WZ(a,$,Vo) holds then 4 is provable from A if 
and only if j ( $ )  is provable from f,(A). I 

In order satisfy the third requirement, we must im- 
pose a restriction on Vo: 
Observation 14: If VO is a set of derivations that 
contains all minimal derivations and h, is a simplifying 
mapping, then if SZ(a, $, VO,) holds, f a ( $ )  will have a 
solution in the abstract theory if and only if it  has one 
in the original theory, and at least one of abstract-level 
solutions will cost no more than that cheapest solution 
in the original theory. I 

This condition is a sound justification for creating 
the abstraction. Imposing more constraints on h, will 
give us even stronger justifications. For example, we 
can require that ha(D) effectively break up D into 
subproblems of equal size. Knoblock [Knoblock, 1990; 
Knoblock et al. ,  19911 shows how this constraint along 

'Given some cost model for derivations ;.ich as the 
number of nodes in the proof tree. 

with other ifFect4 be ability to achieve savings when 
employin; 3rarr' 11 planning. 

Weaker -eleva, ': claims can also be given to the 
system. For exan t le, we can state a distinction a1 
is more relevant than a distinction a2, i.e., whenever 
at is justifiably abstracted, so is a2. Another kind 
of claim is one a probabilistic one, i.e., stating to the 
system that in most casea a is irrelevant to $. The sys- 
tem can then use this claim and succeed in most cases 
and backtrack in others. By stating irrelevance claims 
declaratively we can also state under what conditions 
the relevance claim holds. 

In the next section we examine the case of predicate 
abstractions and show they are justified by irrelevance 
of a predicate distinction. 

Irrelevance of Predicate Distinctions 
When designing a representation, a decision has to be 
-lade about the detail with which to conceptualize the 
.vorld. In some cases, identifying a property P (e.g., 
Car(+)) will suffice. In ottier cases we need to refine 
P to subclasses P = {PI,. . . , Pn} (e.g., SportsCar(+), 
FamilyCar(z), etc.) For some goals, the finer distinc- 
tion of properties is irrelevant, and therefore, reason- 
ing will be more efficient if we change the theory by 
abstracting the distinction. We would like to be able 
to give the system knowledge about the domain that 
will guide it in deciding when a predicate distinction 
is relevant. To define the meaning of such an irrele- 
vance claim in the framework, we first must define the 
abstract theory resulting from removing the predicate 
distinction and the mapping of derivations between the 
original and abstract theories. 

The Abstract Theory 
Suppose we have a theory A, consisting of a set of 
predicates P-: ' P I , .  . . , Pn} ~ snd we want to abstract 
the distinctic Lween them by replacing them by a 
predicate P represents their union (e&, we want 
to replace {Fu dyCor,  Sportscar} by the predicate 
Car). Intuitively, to abstract the theory A, we re- 
place every occurrence of a predicate in P in every 
formula in A by P (e.g., abstract FamilyCar(+) =+ 
Vehic le (z )  by Car(+) 3 Vehic le (+)) .  However, doing 
so for every formula in A might result in an inconsis- 
tent theory or in a theory that will entail conclusions 
that were not entailed by the original one. In exam- 
ple 2, abstracting rule r4 will result in a contradiction 
(Car(z) -Car(+)), and abstracting r3 will result in 
a fact that is not entailed by the theory (i.e., Car(+) 
HighRiskZnsurance(z)  does not follow from the the- 
ory). In order to assure that our derivation mapping 
will be onto, we need the abstract theory to be consis- 
tent with the rround one. Tenenberg [Tenenberg, 1987; 
Tenenberg, . 11 discusses predicate abstractions and 
defines the n mal set of formulas that can be in- 
cluded in thv ! -tract theory such that the abstract 
theory will b+. msistent with the original one. His 

1 2 6  



definition is based on the interpretation of the abstract 
predicate, which is the union of the interpretations of 
the predicates in P. However, as Tenenberg notes, this 
set is usually infinite even when the ground theory is 
finite. Therefore, the abstract theory we consider is 
a finite subset of the one defined by Tenenberg. Our 
abstract theory consists of the abstractions of the for- 
mulas in the base theory that are independent of the 
predicate distinction. Intuitively, a formula is inde- 
pendent if its abstraction is consistent with the theory. 
In the formal definition, we assume that formulas are 
represented as clauses. A literal in a clause is negative 
if it is a negation of an atomic formula (e.g., - f  (z) 
is a negative literal, while P ( z ,  y) is a positive literal). 
Neg(C) ( P o s ( C ) )  denotes the set of negative (positive) 
literals in a clause C .  
Definition15 : Independence - Let P = 
P I , .  . , , P,,, and suppose Neg(C)' is the result of substi- 
tuting every occurrence of an element of P in Neg(C) 
by some other predicate in P using a mapping f 1 .  (Two 
occurrences of the same predicate need not have the 
same mapping under f 1 . )  A clause C is independent 
of a predicate distinction P with respect to a ground 
theory A, if for any such f l  there exists a mapping, 
f 2  of the occurrences of elements of P in Pos(C) to 
elements of P, such that Pos(C)' = f * ( P o s ( C ) )  and 
A I- P os(C)' U Neg(C)'" I 

Note, that a clause that contains only positive liter- 
als from P will be independent whenever it is provable 
from the theory. The problem arises with the negative 
literals. In example 2, all rules but 7-3 are independent 
of the distinction { F a m i l y C a r ,  S p o r t s C a r } .  
Lemma 16: A clause C is independent of a predicate 
distinction P, if and only i f  f ( C )  would be included in 
the abstract theory as defined by Tenenberg in [Tenen- 
berg, 19901. 

The Derivation Mapping 
Given the abstract theory produced by removing the 
predicate distinction, we can define the mapping of 
derivations in the base-theory to those in the abstract 
one. Recall that we require that the mapping be an 
onto mapping. Intuitively, given a derivation in the 
abstract theory, a base-level derivation that is mapped 
to it should be obtainable by reversing the abstraction 
function on the formulas in the derivation. However, 
as the following example shows, this cannot always be 
done. 
Example 17: Consider the following knowledge base: 
p i  : Pi(z) 3 Q(z) 
r2 : P2(z) 3 R ( z )  
r3 : R ( z )  3 P l ( z )  
r4 : P d a )  

"Notice, that in the definition we use I-, which assumes 
a simple case where the base-level reasoner and the meta- 
level reasoner are the same. However, in general, they need 
not be the same. 

Suppose we want to abstract PI, P2 by an abstract 
predicate P. The resulting abstract theory will be: 
51 : P ( z )  &(t) 
s2 : R ( z )  3 P ( z )  
s3 : P ( a )  

SI is included in the abstract theory because rl 
is independent of the predicate distinction (because 
S ( z )  3 &(z) is derivable from the theory). 

The (single) derivation of Q(a) in the abstract theory 
cannot be trivially mapped to a base-level derivation. 
The reason is that it uses s1 and 83, and they are ab- 
stractions of of r1 and r4 which do not yield a base 
level derivation of Q(a). I 

The source of the problem is that some reasoning was  
done in the process of creating the abstract theory. In 
this case, s1 already represented a base-level chain of 
reasoning that derived 9 ( z )  Q(z). 

Informally, we define the derivation mapping, ha ,  
by specifying all the baselevel derivations that map to 
a given abstract-level derivation D. The mapping is 
defined in two steps as follows. Given D, we first con- 
struct all the possible mappings in which occurrences 
of P in D are mapped to elements of P, such that 
the resulting derivation is a valid one. For example, in 
Figure 3, the abstract-level derivation (a) has  two such 
possible mappings (b) and (c). Next try to complete 
each of the resulting derivations such that they will be 
valid derivation in the base-level theory. In our exam- 
ple, (b) cannot be completed because PI(.)  does not 
follow from our original theory. (c) however, can be 
completed, as shown in (d). Any such complete base- 
level derivation is mapped to D under the mapping 
ha.  In Figure 3 only (d) is mapped to the abstract 
level derivation (a) (Le., h,(d)  = a). 

In order to show that h, is onto, we must show that 
at least one of the intermediate derivations can be com- 
pleted to a valid derivation from the base-level theory. 

We prove this by defining one mapping M,  from the 
occurrences of P in D to P. M will have the property 
that when we apply it to D, the resulting derivation 
is guaranteed to have a completion to a valid base- 
level derivation. Let C be the leaves of the abstract 
level derivation, D that contain the predicate P .  We 
define M on the occurrences of P in C such that two 
literals that are resolved somewhere in D are assigned 
the same predicate in P. That ensures that M can be 
extended to all the occurrences of P in D. For clarity, 
we assume that P does not appear in the root of D, 
and that D did not have any non-trivial factoring (see 
[Genesereth and Nilsson, 19871). We define a partial 
order < on the clauses in C, and make assignments to 
clauses in the topological order induced by <. 
Definition 18: For every Ci,Cj E C, Ci < Cj iff an 
ancestor of Ci is resolved with an ancestor of Cj on 
a literal in P, and the ancestor of Ci contributes the 
positive literal to the resolution. I 
Lemma 1 9  The relation < zs acyclic. 

127 



Figure 3: Mapping base-level derivations to abstract-level derivations 

Also note that if C, is minimal in the order <, (i.e., 
there is no Cj such that Cj < C, ) ,  then C, contains 
only positive appearances of P. 

We define M on the occurrences of P in Ci only after 
we have defined the mapping for all its occurrences in 
clauses Cj such that Cj < C,, as follows: 
0 If C, contains only positive appearances of P, we 

map the occurrences of P such that that the re- 
sulting clause is entailed from the base-level theory. 
Note that by the definition of the abstract theory, 
there must be at least one such mapping for Ci. 
If Ci contains negative literals of P, we do the follow- 
ing. For any negative occurrence of P, the positive 
literal with which it is resolved in D has been already 
mapped previously (by the definition of <). Hence 
we map it to the same element of P to which its 
counterpart was mapped. As for the positive liter- 
als, any assignment for them such that the resulting 
clause is derivable from the base theory is a valid 
assignment. The definition of the abstract theory 
(i.e., all elements of C are abstractions of indepen- 
dent base-level clauses), guarantees that at least one 
such assignment exists. 
The mapping M guarantees that every leaf of the 

tree is either in the knowledge base or is derivable from 

it. Therefore, the resulting tree can be completed to a 
full baselevel derivation. 
Theorem 20: The derivation mapping h ,  is well de- 
fined and .:nto ( i .e . ,  every derivation in the abstract 
theory h:: 1 1  least one derivation in the base theory 
that map it), and is a simplifyying abstraction. 

Properties of the Irrelevance Definition 
Given the definition of irrelevance, the question arises 
whether given the original theory and the abstract one, 
it is possible to decide if the predicate distinction is ir- 
relevant to the goal. The following provides a first step 
in that direction by identifying a class of derivations 
that are preserved by the abstraction. 

Theorem 21: If Vo is  a set of derivations of the goal 
such ihat f o r  any D E VO, all ihe facts in E a s e ( D )  
are independeni of the predicate disiinciion PI then 
SI(", +, Vo) holds. 

Observation 22: The converse does not hold. I.e., 
11, can have a derivation in the abstract theory, but 
not have one in the base theory only from independent 
facts. Example 17 illustrates that." I 

"Note that if we change the definition of independence to 
require Pos(C)' U N e g ( C ) '  E A instead of A I- Pos(C)' U 

1 2 8  



From this condition and the algorithms described 
in [Levy and Sagiv, 19921 we can construct an algo- 
rithm for detecting irrelevance of predicate distinctions 
in the following case: 
Corollary 23: Given a Datalog theory, A and fp(A) 
which is the abstract theory resulting from removing 
the disfinction befween predicates in P, there is an al- 
goriihm fo determine whether S I ( P ,  G, VO) holds for  
any given sei of ground facts, where V O  is the set of all 
non-redundanf derivations of $ from A .  

Note that creating the abstract theory is in general 
undecidable because it entails solving the rule redun- 
dancy problem. Methods for detecting some classes 
of redundant rules (e.g., [Sagiv, 19881) can be used to 
construct a subset of the theory. 

Other Relevance Subjects 
The same technique described above can be used to 
define irrelevance of other kinds of relevance subjects. 
[Levy, 19921 discusses the following subjects: 

I 

, 

0 

e , 

e 

e 

Object aggregations: We replace a set of object 
constants by an aggregate object. E.g., replace the 
subparts of a component by one object representing 
the component. For example, in the Missionaries 
and Cannibals problem [Amarel, 19811, we can re- 
place the sets of missionaries and cannibals by ob- 
jects denoting their sets. 
Object distinction: We replace a set of object con- 
stants by a representative object that has only the 
properties common to all elements of the set (i.e., we 
replace a set 0 = (01,. . . , on} by an object 0, such 
that P(o)  holds iff P(o,) holds for every 0, E 0. 
For example, when reasoning about chemical reac- 
tions, it is enough to consider only one representa- 
tive molecule of every type in the chemical formula 
and that suffices to describe the complete reaction 
between the substances. 
Predicate representative: We replace a set of 
predicates P by an abstract predicate that repre- 
sents their infersection. 
Macro rule: We replace a set of facts S by a Logical 
consequence, s of S. 

Conclusions 
We presented a general formal framework for analyz- 
ing the notion of irrelevance. The framework contains 
a space of possible definitions of irrelevance claims that 
enabled to formalize previous definitions (e.g., [Subra- 
manian, 19891) and present new ones. We identified 
several important properties of irrelevance claims and 
demonstrated how these properties change as we move 

N e g ( C ) ’ ,  we will get the converse direction too, Le, if a 
goal has a proof in the abstract theory, it will have one in 
the ground theory in which all facts are independent of the 
predicate distinction. 

in the space of definitions. The framework enabled 
US to irrelevance claims that serve as justifications for 
abstractions, thereby providing a new view on work 
in abstractions. Justifying abstractions by irrelevance 
claims provides a first principles [Subramanian, 19891 
account of abstractions, elucidating questions such as 
automatically creating abstractions, creating abstrac- 
tions that are specific for a given goal and using domain 
knowledge to guide the creation of abstractions. This 
paper presents only initial work on in this direction 
and much remains to be explored. 

Acknowledgements 
I would like to thank several people for discussions on 
the topics discussed in this paper: Adnan Darwiche, 
Ed Feigenbaum, Richard Fikes, Fausto Giunchiglia, 
Pat Hayes, Yumi Iwasaki, Hiroshi Motoda, Pandu 
Nayak and Shuky Sagiv. Much of this work was done 
while I was visiting the Hitachi Advanced Research 
Laboratory, and I would like to thank Hitachi, and es- 
pecially Hiroshi Motoda for their generous support. 

References 
Amarel, Saul 1981. On representations of problems of 
reasoning about actions. In Webber, Bonnie L. and 
Nilsson, Nils J., editors 1981, Readings in Artificial 
Infelligence. Morgan Kaufmann, Los Altos, CA. 
Clancey, William J. 1983. The advantages of abstract 
control knowledge in expert system design. In Pro- 
ceedings of fhe Third National Conference on Artifi- 
cial Intelligence, Los Altos, CA. Morgan Kaufmann. 

Genesereth, Michael R. and Nilsson, Nils J.  1987. Log- 
ical Foundations of Artificial Infelligence. Morgan 
Kaufmann, Los Altos, CA. 
Genesereth, Michael R. 1988. Introspective fidelity. 
In Mefa-Level Archifecfures and Repecfion. Elsevier 
Science Publishers B.V. (North Holland). 75-86. 
Giunchiglia, Fausto and Walsh, Toby 1991. A the- 
ory of abstraction. Submitted to Journal of Artificial 
Intelligence. 
Hayes, Patrick J .  1973. Computation and deduc- 
tion. In Proceedings of the 1979 Mafhematical Foun- 
dations of Computer Science Symposium, Czechoslo- 
vakian Acadamy of Sciences. 
Kifer, M. 1988. On safety, domain independence, and 
capturability of database queries. In Proceedings of 
the Intemafional Conference on Data and Knowledge 
Bases, Jerusalem. 
Knoblock, Craig; Tenenberg, Josh D.; and Yang, 
Qiang 1991. Characterizing abstraction hierarchies 
for planning. In Proceedings of the Ninth National 
Conference on Artificial Intelligence, Cambridge MA. 
MIT Press. 692-697. 
Knoblock, Craig A. 1990. Learning abstraction hi- 
erarchies for problem solving. In Proceedings of fhe 

74-78. 

129 



Eighth National Conference on Artificial Intelligence, 
Los Altos, CA. Morgan Kaufmann. 
Levy, Alon Y. and Sagiv, Yehoshua 1992. Constraints 
and redundancy in datalog. In To appear in the Pro- 
ceedings of  the Eleventh A C M  SIGACT-SIGMOD- 
SIGA RT Symposium on Principles of Database Sys- 
tems, San Diego, CA.  
Levy, Alon Y. 1992. Creating abstractions using rel- 
evance claims. In preparation. 
Plaisted, D. 1981. Theorem proving with abstraction. 
In Artificial Intelligence. Vol. 16, pp. 47-108. 
Sagiv, Yehoshua 1988. Optimizing datalog programs. 
In Minker, Jack, editor 1988, Foundations of Deduc- 
tive Databases and Logic Programming. Morgan Kauf- 
mann, Los Altos, CA. 659-698. 
Shmueli, Oded 1987. Decidability and expressiveness 
aspects of logic queries. In Proceedings of the 6th 
ACM Symposium on Principles of Database Systems. 

Smith, David E. and Genesereth, Michael R. 1985. 
Ordering conjunctive queries. In Artificial Intelli- 
gence. 26(2) pp. 171-215. 
Subrarnanian, D. and Genesereth, M.R. 1987. The 
relevance of irrelevance. In Proceedings of the Tenth 
International Joint Conference on Artificial Intelli- 
gence, Los Altos, CA. Morgan Kaufmann. 
Subramanian, Devika 1989. A theory of justified re- 
formulations. In Ph.D thesis, Dept. of Computer Sci- 
ence, Stanford University. Stanford, CA. 
Tenenberg, Josh D. 1987. Preserving consistency 
across abstraction mappings. In Proceedings of the 
Tenth International Joint Conference on Artificial In- 
telligence, Los Altos, CA. Morgan Kaufmann. 1011- 
1014. 
Tenenberg, Josh D. 1990. Abstracting first order th- 
ries. In Benjamin, Paul, editor 1990, Change of Repre- 
sentation and Inductive Bias. Kluwer, Boston, Mass. 
Ullman, Jeffery D. 1989. Principles of Database and 
Knolwedge-base Systems, Volume I ,  II.  Computer Sci- 
ence Press, Rockville MD. 

237-249. 

130 



Levy 

Alon Levy 
Computer Science Department 

Stanford University, 
Stanford, CA, 94305, 

email: levy@cs.stanford.edu 

Research Summary 

My research is focussed on studying the notion of irrelevance in different 
areas of problem solving. I have developed a general framework in which 
one can study the issues concerning irrelevance and how it can be applied to 
problem solving. The framework has been applied to three different areas. 

The first is in the context of deductive databases [LS92]. There we have 
shown how analyzing the notion of irrelevance allows us to identify new kinds 
of redundancies in Datalog programs (Horn rules without function symbols), 
and we have given new algorithms for detecting such redundancies. 

The second is in work on abstractions. Much of the work in A I  on creating 
abstraction hierarchies and problem reformulation is based on the intuition 
that we abstract a problem by removing irrelevant detail. [Lev921 shows how 
such irrelevance claims can be formalized in my framework. Doing so enables 
one to explicitly state justifications for abstractions, therefore enabling the 
system to reason about the abstraction hierarchies it creates for a given goal. 
In addition, algorithms for automatically deducing irrelevance can be used 
to automatically create abstractions. 

The framework has been applied to the problem of modeling physical 
devices [LIM92]. When a system chooses a model for a device given some 
task such as diagnosis, design or simulation, it needs to make decisions about 
which aspects of the device are relevant to  the current task. We have shown 
how heuristics for guiding model selection can be stated as irrelevance claims 
in the language provided by the framework. We were able to express heuris- 
tics that have been discussed in the literature and to come up with new ones 
motivated by the vocabulary existing in the framework. 

131 



References 
[Lev921 Alon Y. Levy. Irrelevance in problem solving. Knowldedge Sys- 

tem Laboratory Technical Report, Computer Science Department, 
Stanford University., 1992. 

[LIM92] Alon Y. Levy, Yumi Iwasaki, and Hiroshi Motoda. Relevance rea- 
soning to guide compositional modelling. Knowledge System Labo- 
ratory Technical Report. Computer Science Department, Stanford 
University, '1992. 

(LS921 .41on Y. Levy and Yehoshua Sagiv. Constraints and redundancy 
in datalog. In To appear in the Proceedings of the Eleventh ACM 
SIGA CT-SIGMOD-SICA RT Symposium on Principles of Database 
Systems, San Diego, CA. ,  1992. 

1 3 2  



L i n d e n  

Generation and Exploitation of 

Scheduling and Resource Allocation 
Aggregation Abstractions for -:&L c3 

// - j l L  

Theodore A. Linden Michael R. Lowry I i- 6 0  r 3 J  

I Advanced Decision Systems Kestrel Institute 
1500 Plymouth St. 
Mountain View, CA 94043 
linden@ads.com lowry@ kestrel.edu 

3260 Hillview Avenue 
Palo Alto, CA 94306 

Abstract 
Our research is investigating abstraction of 
computational theories for scheduling and resource 
allocation. These theories are represented in a variant 
of f i i t  order predicate calculus, parameterized multi- 
sorted logic, that facilitates specification of large 
problems. A particular problem is conceptually stated 
as a set of ground sentences that are consistent with a 
quantified theory. We are mainly investigating the 
automated generation of aggregation abstractions and 
approximations in which detailed resource allocation 
constraints are replaced by constraints between 

.aggregate demand and capacity. We are also 
* investigating the interaction of aggregation 

abstractions with the more thoroughly investigated 
abstractions of weakening operator preconditions. The 
purpose of the theories for aggregated demand/capacity 
is threefold first, to answer queries about aggregate 
properties, such as gross feasibility: second, to reduce 
computational costs by using the solution of 
aggregate problems to guide the solution of detailed 
problems: and third, to facilitate reformulating theories 
to approximate problems for which there are efficient 
problem solving methods. We also describe novel 
methods for exploiting aggregation abstractions. 

Motivation 
Domain specific planning and scheduling systems have 

achieved a modicum of real world success, and current 
efforts are aimed at vastly increasing the size and 
complexity of problems which can be handled with 
knowledge-based technology. We believe that much of the 
power of domain-specific planning and scheduling systems 
comes from their use of specialized algorithms at different 
levels of abstraction. For example, a resource allocation 
problem can often be approximated as linearized upper and 
lower bounds at a high level of abstraction, and solved 
using linear programming methods in order to identify 
bottleneck resources. Domain-specific scheduling systems 
use many different kinds of abstraction, not just the 
abstraction hierarchies defined by dropping literals from 

operator preconditions, as is the case for ABSTRIPS and 
most of its progeny. In particular, for large scheduling and 
resource allocation problems whose computational 
complexity is characterized by resource contention between 
many separate tasks, aggregation abstractions of demand 
and resource capacity play a more dominant role than 
abstraction of operator preconditions. An example is to 
aggregate all transportation capacity into a single linear 
quantity - total cargo volume. However. the drawback of 
domain-specific systems is their lack of flexibility and the 
necessity of handcoding the knowledge. 

The objective of our research is to develop the 
technology for dynamically 'compiling' domain-specific 
scheduling systems from declarative specifications and the 
subgoals and constraints that arise during planning and 
scheduling. The goal is to achieve the efficiency of hand- 
coded domain-specific systems but at the same time 
maintain the benefits of domain independent systems which 
interpret declarative problem specifications. The benefits of 
the latter arise from their generality: because the 
assumptions are explicit rather than hardcoded, the system 
is more widely applicable. the declarative representation is 
more transparent and thus more trusted and more easily 
validated, and furthermore the representation is more easily 
modified as requirements evolve. The automated synthesis 
and selection of abstractions is a key component to 
enabling domain-specific systems to be compiled from 
declarative specifications. 

The next section of this paper describes the underlying 
semantics we are using for abstractions, approximations, 
and aggregations. The subsequent section describes the 
techniques we are developing for generating abstractions and 
approximations. The final section describes new techniques 
for exploiting aggregation approximations and abstractions. 

Semantics of Abstractions, 
Approximations, and Aggregations 

Semantically, we define an abstraction as a (possibly 
partial) mapping from the models of one theory to the 
models of another theory. We assume that these mappings 
are transitive and reflexive. If a mapping is total and can be 
inverted, then the two theories it relates are isomorphic. 

133 



The intended semantics of a theory determine the 
appropriate constraints on a valid abstraction. We define the 
appropriate abstraction constraints through the converse 
mapping: implementation. For loose specifications, the 
intended semantics is any model satisfying the theory, 
hence a valid implementation is a mapping from the 
models of the implementing theory into (but not 
necessarily onto) the models of the loose specification. 
This is compatible with definitions of abstraction as theory 
generalization, i.e. a widening of the class of models. For 
this type of semantics, implementation is the same as 
theory refinement. 

For tight specifications. the intended semantics is a 
minimal model (up to isomorphism). Minimal model 
semantics correspond to the operational semantics of most 
types of logic programming. Minimal model semantics are 
also useful for succinctly axiomatizing models with 
inductive types, the simplest being the natural numbers. 
Hence the appropriate constraint on abstraction is a 
mapping from a single concrete model to a single abstract 
model. A third type of specification is paramererired, 
consisting of a parameter theory, which has many 
interpretations. and a body which extends the parameter 
theory. The usual intended semantics for this type of 
specification is to take all the models of the parameter 
theory, and then to extend each one with additional objects. 
functions and relations such that this extension is minimal 
with respect to all pqssible extensions consistent with the 
body. This third type of semantics is best Seen as a tight 
specification for each model of the parameter theory. This 
type of semantics is most useful when a general 
specification is given for a whole class of problems. 

We have axiomatized various types of generic resources 
using parameterized specifications: consumable resources 
(such as fuel), reusable non-shareable resources (such as a 
landing strip), synchronized-shareable resources (such as a 
cargo ship), and independent-shareable resources (such as a 
parking lot). A particular domain theory is built up by 
composing instantiations of these generic parameterized 
r e m e  theories with particular resources. 

Syntactically, an abstraction is defined through two 
theories and a set of definitions for abstraction functions 
from the objects and operations of the concrete model(s) to 
the objects and operations of the abstract model(s). The 
abstraction functions are defined in the syntax of the union 
of the abstract and concrete theories. 

Approximations arise from weakening or strengthening 
the criteria for models of a theory. In the context of our 
research, this weakening/strengthening is always with 
respect to queries or goals. For example, if the goal is to 
transpon cargo from one country to another given a certain 
set of resources, then the satisfaction of a strengthened 
approximation guarantees the transportation feasibility of 
the original. while the non-satisfaction of a weakened 
approximation guarantees the transportation infeasibility of 
the original. Strengthening and weakening occur not only 
with respect to the uuth of sentences but also with respect 
to any partial order, such as the total order on the reals 

(uue/false defines a partial order on the booleans). For 
example, approximations can also be upper and lower 
bounds on resources required for transportation feasibility. 
Given a complex query or goal it is necessary to map 
strengthening/weakening of the whole into 
strengtheninglweakening of the parts. The polarity analysis 
for sentences [Manna & Waldinger 861 has been extended 
to a polarity analysis for any type of formula ranging over 
any domain with a partial order [Smith 921. Thus given a 
complex query with a specified direction of strengthening or 
weakening, the constraints on the strengtheninglweakening 
of the functions and relations in the query can be 
mechanically derived. 

Aggregations are mappings from collections of objects 
with their individual attributes to a whole representing the 
collection with attributes for the collective. In theory 
aggregations can arise as equivalent conditions for 
satisfaction of a goal. For example. in order for a chemical 
reaction to occur in a solution the individual molecules 
must have sufficient kinetic energy. This constraint on the 
attributes of individual molecules can be reformulated into 
an equivalent constraint on the temperature of the whole 
solution. In the context of the research reported in this 
paper aggregations are most often approximations with 
respect to a query or goal. 

Generation of Aggregation Abstractions 
We are using two techniques for automatic generation of 
aggregation approximations. The fat is based on analysis 
of behavioral equivalence: given a goal. two objects are 
behaviorally equivalent if they can be mutually substituted 
for each other in the achievement of the goal. For example, 
for the goal of transporting a rifle division. two small cargo 
planes are behaviorally equivalent to one large cargo plane. 
However, for transporting a heavy armor division only the 
large cargo plane has a sufficient girth for tanks and heavy 
artillery. Thus for transporting heavy annor divisions two 
small cargo planes are not behaviorally equivalent to a 
sinqle large cargo plane. This simple example illustrates 
th.11 abstractions such as total lift capacity must be 
dependent on context in order to be useful. 

The result of behavioral equivalence analysis is the 
definition of an equivalence relation on the objects of a 
domain. In an abstract theory, behaviorally equivalent 
objects are identified. Syntactically, the equivalence relation 
in the concrete theory is transformed to an equality relation 
in the abstract theory. A number of issues arise in ensuring 
that the transformation from a behavioral equivalence 
relation to an equality relation is semantically well defined, 
particularly for inductively defined types. These issues are 
addnssed in [Lowry 1989. Lowry 19901. 

When behavioral equivalence analysis is applied to a set 
of goals, or to a complex domain theory with many 
constraints, the result will be a set of behavioral 
equivalences. (The behavioral equivalence for the 
conjunction of the goals is the intersection of the individual 
equivalence relations.) This set can be ordered by inclusion, 
defining a partial order on behavioral equivalence relations. 

134 



Upper and lower bounds exist for each pair of behavioral 
equivalence relations; a lattice is defined by including the 
universal equivalence relation (all objects equivalent) and 
the identity equivalence relation (each object is equivalent 
only to itself). This lattice can be more densely ordered by 
inheriting ordering relations on the goals and constraints. 
For example. ABSTRIPS type orderings on literals in the 
preconditions of operators derived through various programs 
[Tenenberg 89: Knoblock 89,901 can be used to order their 
corresponding behavioral equivalence relations. 

The second technique for generation of aggregation 
approximations is through the use of bounding 
approximations: given a goal or query, and an abstract 
domain theory obtained through behavioral equivalence 
analysis. an extended polarity analysis is applied to the 
goal(s) with respect to the abstract domain theory. Various 
kinds of symbolic bounding approximations are derived by 
KIDS through this polarity analysis, which is currently 
implemented through a transitive rewriting technique on 
formulas called directed inference [Smith 901. These 
approximations include necessary conditions, sufficient 
conditions, symbolic upper bounds, and symbolic lower 
bounds. These approximation functions are composed with 
the abstraction functions derived through behavioral 
equivalence analysis to yield the abstraction 
(approximation) functions that map the concrete domain 
onto the abstract domain. 

To derive aggregation approximations, the domain theory 
must include generic axioms defining the relation between 
aggregate constraints and constraints on individuals. Most 
of the resources we are considering are linear: resources 
have time-varying capacities which at each instance cannot 
be exceeded by the sum of the consumers assigned to that 
resource. The axioms for these kinds of generic aggregation 
constraints, together with a particular domain theory, are 
transformed by the polarity analysis into definitions of 
possible aggregation approximations. 

Like the behavioral equivalence abstractions, the 
aggregation approximations derived through polarity 
analysis can be ordered by strength. Furthermore, directed 
inference, because it is a transitive rewriting technique, 
automatically generates part of this ordering relation. The 
composition of the lattice of behavioral equivalence 
relations and the ordering on aggregation approximations 
again yields a lattice. We are investigating techniques for 
this composed lattice to be implicitly defined rather than 
explicitly generated. 

Exploiting Resource Abstractions 
For very large resource allocation and scheduling problems 
that are solved interactively, some form of greedy algorithm 
is often appropriate. In this section, we illustrate the use 
of resource abstraction hierarchies to enhance the 
opportunities for finding a linear ordering of allocation and 
scheduling decisions that achieves good results within the 
context of a greedy algorithm. The same resource 
abstraction hierarchies can also be used to enhance the 

variable ordering heuristics used with other search 
strategies. 

The example described later in this section shows that 
resource absmctions can enable a successful linear ordering 
of resource allocation decisions where no such ordering 
exists without the abstractions. The resource abstractions 
allow allocation decisions (assignments of resources to 
operations) to be made in steps down the resource 
abstraction hierarchy; first an abstract resource is allocated 
to an operation, later, this decision is refined to a mote 
specific resource. Each allocation of an abstract resource is 
essentially a reservation for an unspecified instance of that 
abstract group of resources. By making the reservation 
early while defemng more specific resource choices, the 
deferred decisions can take advantage of information that 
becomes available as other decisions are made. 

The cost of using resource abstraction hierarchies is the 
additional checking needed to maintain consistency of the 
allocation as it is built incrementally. Each allocation 
decision must be checked to ensure that it does not overuse 
the resource that is being assigned. With abstract 
resources, each decision must be checked not only against 
the resource being assigned but also against the more 
absrract resources. 

To formalize these concepts. assume we have a resource 
abstraction hierarchy in the form of a lattice (R, Y=) where 
R is a set of resource types and Y =  is the extends 
relation which is a partial ordering defined on R meaning 
“is more specific than (or equal to).” In the example 
discussed later in this section, the specific resources are 
seaports and R consists of individual seaports and selected 
sets of seaports. The lattice relation on R is membership 
or subset. For example, Norfolk Y tank-loading seaports Y 

East Coast seaports. Similarly. Baltimore Y mid-Atlantic 
seaports. 

Given a set of specific resources, the power set of these 
resources is a candidate lattice; however, this is typically a 
bad candidate because it would involve exponential cost in 
checking resource assignments against the more abstract 
nodes. While a n m w  lattice can be developed at design 
time: it is likely to be far more effective to choose 
abstractions that are tailored to the specific problem 
instance using the techniques discussed previously of 
behavioral equivalence analysis and aggregation 
approximations. 

Figure 1 depicts a small portion of a simplified problem 
involving military crisis action deployments. A large 
number of force modules (such as all the equipment 
associated with a brigade) are to be shipped through East 
Coast ports. Two of the hundreds of such force modules 
(FM15 and FM35) are identified in the figure. The 
problem addressed in this example is to plan the 
deployment without excessive congestion at the ports 
(other aspects of the overall problem involve scheduling of 
transports and other resources). 

135 



Figure 1: Problem of assigning seaporrs to transportation 
tasks 

The two force modules can be shipped through any of 4 
different ports. labeled B. N, S. and J. The dashed lines 
between the force modules and the ports that are suitable far 
shipment are labeled with the utility of using this route. 
That utility summarizes the current state of information 
about the cost of ground transportation to the port. the 
locations of available transport ships, characteristics of the 
ports, and other factors. 

If this port selection problem could be isolated from 
other aspects of the overall crisis action planning problem, 
i t  could be solved by existing OR algorithms. 
Unfortunately, there are many complex dependencies 
between the port selection and the scheduling of other 
resources that require the port selection decisions to be 
interleaved with other decisions within an overall multi- 
user, interactive construction paradigm. Within this 
context, the port selection is done with a greedy algorithm, 
and a goal is to use the locally available infonnaticn to 
order the allocation decisions. 

This example focuses on deciding whether to choose a 
port for FMl5 before or after choosing one for FM30. 
Without abstraction levels, neither ordering can be 
successful under all interactions with other demands on the 
port resources. If we use the simple greedy approach and 
assign to FMIS fmt because it can achieve a higher utility. 
then the arbitrary choice that has be made between B and N 
may prevent FM3S from obtaining its best choice. (We 
can't choose B knowing that FM35 prefers N because we 
are assuming there are many other force modules that are 
also competing for both B and N, and many of them may 
have higher priority than FM35.) On the other hand. if 
the assignment is made to FM3S fmt, it may choose port 
N. but that could be the cause of FM15 not getting either 
of its good choices. This problem of ordering these two 
allocation decisions (and the decisions about all other pairs 
of force modules) might be avoided by using statistical 
look-ahead techniques [Fox 891 that project the contention 

at the ports and may allow FM15 to choose first and make 
a non-arbitrary choice between B and N. Separating the 
decisions across abstraction level gives additional 
opportunities to be successful with a greedy algorithm. and 
appears to be especially useful in conjunction with 
statistical look-ahead techniques. Note that no technique 
can make a greedy algorithm successful all the time. 

Two abstractions on the seaports are shown in Figure 
I-mid-Atlantic ports and M-1 loading ports. For the 
abstractions to be effective, the utility function should 
often be more homogeneous across different instances of 
the abstract resource than across the entire domain of the 
resources. This can be a goal when creating abstractions 
dynamically. 

The mid-Atlantic port abstraction enables an ordering of 
the port allocation decisions for these two force modules 
that will almost always be successful: 

Reserve a mid-Atlantic port for M I 5  (assuming it 
competes successfully with other force modules for these 
pons). 

Reserve an M-1 loading port for FM35 (assuming it 
competes successfully with other force modules for these 
pow. 

3) Assign N to FM35 assuming it preserves all 
reservations for both mid-Atlantic and M-1 loading ports 
and competes successfully for N with the other force 
modules. 

Assign to FMIS whichever instance of a mid- 
Atlantic port is left over. (The reservation guarantees that 
some mid-Atlantic port will be left for FM15) 

The reservation that FMl5 has for a mid-Atlantic port 
allows a lower priority force module to be given precedence 
over the higher priority module in step three-as long as 
the reservation is preserved 

This four step ordering of the decisions about these two 
force modules often achieves a good solution without 
backtracking. Similar reasoning for other pairs of force 
modules can be used to order the other decisions made by a 
greedy algorithm-but there are no guarantees that a good 
ordering can be found for all pairs of decisions. 

1) 

2) 

4) 

136 



Bibliography 
[Fox 891 Mark S. FOX et al. "Constrained Heuristic Search", 

Proc. IJCAI-89, Morgan Kaufmann Publ. 
[Knoblock 891 Craig A. Knoblock, "A Theory of Abstraction 

for Hierarchical Planning", Change of Representation and 
Inductive Bias. ed. D.P. Benjamin. Kluwer 1989 

[ Knoblock 901 Craig A. Knoblock. "Learning Problem- 
Specific Abstraction Hierarchies". Proc. of Workshop on 
Change of Representation and Problem Reformulation; 
Menlo Park, CA March 1990 

[Linden 891 Theodore A. Linden, "Planning by 
Transformational Synthesis." IEEE Expert. 4.2 Summer, 
1989. pp. 46-55. 

[Linden 90) Theodore A. Linden. "Transformational Synthesis: 
A Paradigm for Building Large-Scale Planning 
Applications," Planning Systems for Autonomous Mobile 
Robots. ed. D. P. Miller and D. J. Atkinson, Rentice Hall. 
1989. 

[Lowry 891 Michael R. Lowry, "STRATA: Problem 
Reformulation and Abstract Data Types", in 

, Edited by Paul Benjamin, 
Kluwer Academic Publishers 1989 

[Lowry 891 Michael R. Lowry, "Algorithm Synthesis through 
Problem Reformulation", PhD Thesis, Stanford University, 
1989 

[Lowry 90) Michael R. Lowry. "Abstracting Domains with 
Hidden State", in Proc. of Workshop on Automatically 
Generating Abstractions and Approximations, AAAI-90 

[Manna & Waldinger 86) Manna, Z. and Waldinger. R. Special 
Relations in automated deduction. Jorunal of r r h e  ACM 33, 1 

[Smith-Lowry-891 Smith, D.R. and Lowry. M.R.. Algorithm 
Theories and Design Tactics, in Proceedings of the 
International Conference on Mathematics of Program 
Construction, LNCS-375, Springer-Verlag. Berlin. June 
1989. 379-398 (to appear in Science of Computer 
Programming, 1990). 

[Smith-90] Smith, D.R.. KIDS: A Semi-Automated Program 
Development System, in IEEE Transactions on Software 
Engineering special issue on Formal Methods. September 
1990. 

[Smith-92] Smith, D.R., Connecting Specification 
Morphisms, in Proceedings of the International Conference 
on Mathematical Theory of Computation. 

[Tenenberg 891 Josh Tenenberg. "Abstracting First-Order 
Theories". Change of Representation and Inductive Bias. ed. 
D.P. Benjamin, Kluwer 1989 

KWese- 
. .  v 

pp. 1-59. 

, 

137 



Lowry 

Symmetry as Bias: 
Rediscovering Special Relativity 

Michael R. Lowry 

AI Branch 

NASA Ames Research Center 
Moffett Field. CA 94035 

lowry@ pluto.arc.nasagov 

M.S. 269-2 

Abstract 
This paper describes a rational reconstruction of 
Einstein’s discovery of special relativity, validated 
through an implementation: the Erlanger program. 
Einstein’s discovery of special relativity 
revolutionized both the content of physics and the 
research strategy used by theoretical physicists. This 
research strategy entails a mutual bootstrapping 
process between a hypothesis space for biases. defined 
through different postulated symmetries of the 
universe, and a hypothesis space for physical theories. 
The invariance principle mutually consaains these two 
spaces. The invariance principle enables detecting 
when an evolving physical theory becomes 
inconsistent with its bias, and also when the biases for 
theories describing different phenomena are 
inconsistent. Structural properties of the invariance 
principle facilitate generating a new bias when an 
inconsistency is detected. After a new bias is 
generated, this principle facilitates reformulating the 
old, inconsistent theory by treating the latter as a 
limiting approximation. The structural properties of 
the invariance principle can be suitably generalized to 
other types of biases to enable primal-dual learning. 

In troductionl 
Twentieth century physics has made spectacular 

progress toward a grand unified theory of the universe. 
This progress has been characterized by the development of 
unifying theories that are then subsumed under even more 
encompassing theories. Paradigm shifts are nearly routine, 
with the postulated ontology of the universe changing from 
the three dimensional absolute space of Newtonian physics, 
to the four dimensional space-time of relativistic physics, 
and through many other conceptual changes to current 
string theories embedded in ten dimensions. Theoretical 
physicists attribute much of the success of their discipline 

lThis research was supported in part by a sabbatical while 
the author was a member of the Kesml Institute, and in 
part by a subcontract through Recom Technologies to 
NASA Ames Research Center. 

to the research strategy first invented by Einstein for 
discovering the theory of relativity [Zee 861. 

At the heart of Einstein’s strategy u~as the primacy of 
the principle of invariance: the law? of physics are the 
same in all frames of reference. This i-nnciple applies to 
reference frames in different orientauons. displaced in 
time and space, and moreover to reference frames in 
relative motion. This principle also applies to many other 
aspects of physics. including symmetries in families of 
subatomic particles. The application of the invariance 
principle to “two systems of coordinates. in uniform 
motion of parallel translation relatively to each other” was 
Einstein’s fmt postulate: the principle of special relativity 
Einstein 19051. 

Einstein’s genius lay in his strategy for using the 
invariance principle as a means of unifying Newtonian 
mechanics and Maxwell’s electrodynamics. This strategy 
of unifying different areas of physics through the 
invariance principle is responsible for many of the 
advances of theoretical physics. In the parlance of current 
machine learning theory, Einstein’s strategy was to 
combine the principle of special relativity with his second 
postulate, the constancy of the speed of light in a v a c ~ m .  
to derive a new bias. (This second postulate , a 
consequence of Maxwell’s equations: [Einstein 1905 ’:L’s 
that experimental attempts to attribute it to a light metilum 
were unsuccessful.) This new bias was designed and 
verified to be consistent with Maxwell’s electrodynamics. 
but was inconsistent with Newton’s mechanics. Einstein 
then reformulated Newton’s mechanics to make them 
consistent with this new bias. He did this by treating 
Newton’s mechanics as a limiting approximation, from 
which the relativistic laws were derived through 
generalization by the new bias. 

Einstein’s strategy is a model for scientific discovery 
that addresses a fundamental p d o x  of machine learning 
theory: to converge on a theory from experimental 
evidence in non-exponential time, it is necessiuy to 
incorponte a strong bias [Valiant 841, but the stronwr the 
bias the more likely the ‘correct’ theory is exclude, >rn 
consideration. Certainly any conventional analysis I ‘at 
could be learned in polynomial time would exclude ;i 
unified theory of physics. The paradox can be avoit* i 

138 



machine learning algorithms that have capabilities for 
reasoning about and changing their bias. Even if a strong 
bias is ultimately ‘incorrect’, it is still possible to do a great 
deal of useful theory formation before the inconsistencies 
between the bias and empirical facts becomes a limiting 
factor. The success of the Galilean/Newtonian framework 
is an obvious example. To avoid the paradox, a machine 
learning algorithm needs to detect when a bias is 
inconsistent with empirical facts, derive a better bias, and 
then reformulate the results of learning in the incorrect bias 
space into the new bias space [Dietterich 911. The Erlanger 
program described in this paper is such an algorithm. 

Einstein’s strategy is essentially a mutual bootstrapping 
process between two interrelated hypothesis spaces: a 
space for biases, and a space for physical theories. The 
invariance principle defines the space of biases; each bias 
is a different postulated set of symmetries of the universe, 
formalized through a group of transformations. The 
invariance principle also defies a consistency relationship 
that mutually constrains the bias space and the space for 
physical theories. The hypothesis space for biases has a 
rich lattice structure that facilitates generating a new bias 
when a shift of bias is necessary. The hypothesis space for 
physical theories has an approximation relation between 
theories (limit homomorphisms) that, after a shift in bias, 
facilitates generating a new theory from an old 
(approximate) theory and the new bias. The entire process 
converges if learning in the bias space converges. 

This paper builds upon the considerable body of 
literature on relativity and the role of symmetry in modem 
physics. Its contribution includes identifying and 
formalizing the structural relationships between the space 
of biases and the old and new theories that enabled 
Einstein’s strategy to succeed, in other words, made it 
computationally tractable. The tactics for canying out the 
components of this strategy have been implemented in the 
Erlanger program, written in Mathematica v.1.2. 

The next section of this paper presents an overview of 
Einstein’s strategy. The following section introduces the 
invariance principle, which determines the consistency 
relationship between a bias and a physical theory. It also 
describes the procedure for detecting inconsistency. The 
following section presents the tactic for computing a new 
bias using the invariance principle. It takes the reader 
through the Erlanger program’s derivation of the Lorentz 
transformations. The section after defines l i m i t  
homomorphisms, a formal semantics for approximation. 
The following section describes BEGAT: BiasEd 
Generalization of Approximate Theories, an algorithm that 
uses the invariance principle and the semantics of limit 
homomorphisms to generate components of the new 
theory. The paper concludes with a generalization of 
Einstein’s strategy called primal-dual learning, which 
might be applied to other types of biases. 

Overview of Einstein’s Strategy 
Einstein’s strategy for deriving special relativity will 

first be explained through an analogy with symmetries and 
tangents of geometric figures. Then the structural 
components of the invariance principle interrelating the 
bias space and the space of physical theories will be 
outlined and the overall research strategy described with 
respect to these components. The next section will describe 
the mathematics of the invariance principle a;S it applies to 
theories of physics. 

Symmetry and Group Theory 
The symmetries of a geometric figure are invertible 

transformations that map the figure to itself. For example, a 
square is mapped to itself by various transformations about 
its center: horizontal reflections. vertical reflections. and 
ninety degree rotations. Because these transformations are 
invertible, they f o n  a group. 

A group is any set with a constant identity element, a 
binary operation defined on any two elements, and an 
inverse operation mapping any element to its inverse. A 
transformation group consists of elements which are 
transformations of some other set S; each transformation is 
a bijection from S to S. A transformation T defined on S is 
an automorphism of a subset F 7 S iff T( F) = F . Hence if 
S is the two dimensional plane and F is a geometric figure 
such as a square, then the symmetries of F are those 
transformations T such that T(F) = F . Restrictions can be 
placed on the transformations considered: for example, 
transformations that preserve topological structure are 
called homeomorphisms while transformations that 
presewe distance are called isometries. The isometries of a 
square include horizontal reflections, vertical reflections, 
and multiples of ninety degree rotations about it center. 

Symmetries can be represented through transformation 
equations: for example, the equations for a rotation of 8 
degrees about the origin in two dimensions define new 
primed coordinates for each point in terms of the original 
coordinates: X’ = xcos e - p i n  e , y’ = xsin 8 + y cos 8. If 
8 is a constant, then these equations represent a single 
transformation. If 8 is a parameter, then these equations 
represent a set of transformations. Note that for any 8 , a 
circle with its center at the origin is mapped to itself. Hence 
these equations denote a set of automorphisms of all origin- 
centered circles. One way to prove this algebraically is to 
solve for the equation of a circle, i.e., reduce x 2  + yz = r 2  
to a set of functions for y in terms of x for different 
quadrants. plug the definitions of these functions into the 
transformation equations, and then show that the new 
points also satisfy these equations. 

The method implemented in the Erlanger program is 
slightly different because it is based upon an equivalent but 
alternative approach to defining symmetries. (See 
[Friedman 831 for a thorough analysis of the relation 

139 



. .  

between these two approaches, as applied to space-time 
theories.) Instead of viewing the transformations as 
mappings from points to points within a single reference 
frame. the transformations are viewed as mappings 
between reference frames. A figure is symmetric if it 
appears exactly the same in the new reference frame as it 
does in the old reference frame. In this alternative 
approach, the transformation equations are the same except 
that the sign of the parameter is inverted. because rotating 
the reference frame 8 about the origin is equivalent to 
rotating the figure by -8 about the origin: 
x' = xcose + p i n  8 , y' = -xsin 8 + ycose. 

An Analogy to Einstein's Strategy 

Electrodym .s 

Newton's 
mechanicd 

Low velocity 
region. 

Figun 1. 
Einstein's strategy for deriving special relativity is 

illustrated through the simple geometric analogy in Figure 
1. Newton's mechanics is represented by the circle on the 
right, its set of symmetries are all  rotations and reflections 
about its center. This set of symmetries is inconsistent with 
the invariance of the speed of light, a deductive 
consequence : f  Maxwell's electrodynamics that is 
represented by !he small bold circle on the left. 

Einstein derived the set of symmetries consistent with 
the constant speed of light by first generalizing from the 
particular circle representing Newton's mechanics to 
symmetries for all possible circles, Le., rotations and 
reflections about all possible centers. He then specialized 
this set of all possible circular symmetries by solving for 
the center of the circle consistent with the constant speed of 
light. This new symmetry was verified to be consistent with 
Maxwell's electrodynamics. 

Einstein then derived relativistic mechanics, represented 
by the larger left circle, through two constraints: that it be 
circularly symmetric around the same center as 
electromagnetic phenomena, and that it be tangent to 
Newton's mechanics as relative velocities approach 0. Note 
that Newton's mechanics had only been empirically 
verified at low velocities compared to light: the rest of the 
circle was assumed from the originally postulated 
symmetries dating back to Galileo. In this manner Einstein 
unified electromagnetism and mechanics under the same 

set of symmetries while still accounting for the wealth c f  
experimental confirmations of Newton's theory at lo- 
velocities compared to the speed of light. Althoug! 
simplistic, this geometric analogy captures the essential 
extensional relationships between Newton's mechanics, 
Maxwell's electromagnetism, and relativistic mechanics. 

One of the crucial facts about symmetry as bias is that 
the groups corresponding to different figures form a lattice 
ordered by the subset relation. (More generally, the 
ordering is defined through group homomorphisms.) There 
is a contravariant relation between the complexity of an 
object and its set of symmetries. For example. a square is 
more complex than a circle, hence the group of 
transformations for a square is a subset of the group of 
transformations for a circle. As explained in the next 
section, this relation between geometric figures and their 
symmetries also holds between theories of physics and 
their symmetries. This contravariant relation is essential to 
the bootstrap learning of Einstein's strategy. 

Structural Relations Exploited in Einstein's 
Strategy 

Figure 2 illushates the structural relations between the 
bias space and the space for physical theories that was 
exploited by Einstein, and indicates how these same 
srructud relations might be exploited in other types of 
bias. 

Figure 2 
1. The diamond represents a space of biases for physical 

laws. The biases are different postulated symmetries of the 
universe. As modem physics has evolved, the bias has 
evolved. Each bias in this space is formalized 1s a 
transformation group. 

2. The consistency relationship between a I? a 
transformation group) and a physical theory is repre .d 
by a solid black line. The diagram illustrate. :at 

140 



Newtonian mechanics is consistent with the Galilean 
transformation group. 

3. When an inconsistency is detected between an 
experimental fact and the current bias, then a new bias is 
computed. The new bias is computed by combining the 
new observation, an upper bound (represented by a hollow 
circle) and lower bounds (represented by a solid black 
circle). The upper bound is a superset of transformations 
that constrains the types of transformations that are 
considered. The transformations in this superset that are 
consistent with the new observation are selected for the 
new bias. This selection is done by symbolically solving 
for those transformations that are consistent with the new 
observation, rather than enumerating over all the 
transformations in the upper bound. The calculation is 
simplified through the use of lower bounds. Einstein 
derived the Lorenu transformations through this procedure. 

4. Laws in the new hypothesis space are constrained to 
be consistent with the new bias and also to have, as a 
limiting approximation. the laws in the old hypothesis 
space. This limiting approximation is indicated by the 
arrow from relativistic mechanics to Newtonian mechanics. 
In fact, the new laws can often be derived from the old 
laws by using the new bias to reformulate the old laws. 
This was the method Einstein used to generate relativistic 
mechanics. 

The power of Einstein's strategy is that his framework 
scales up from special relativity through the history of 
twentieth century physics. although the mathematics 
becomes considerably more complex. From the viewpoint 
of machine learning. the power of Einstein's strategy is his 
mutual bootstrapping between the bias space and the 
hypothesis spaces by exploiting the structural relationship 
between them: the invariance principle. 

Symmetry as Bias: the Invariance Principle 
Symmetry is a unifying aesthetic principle that has been 

a source of bias in physics since ancient times. In modem- 
physics this principle is stated as: 'the laws of physics are 
invariant for all observers.' An invariance claim is a 
universally quantified statement of the form 'For all 
events/histories of type F, for all reference frames of type 
R,  Physical Theory P holds'. An invariance claim implies 
that a group of transformations mapping measurements 
between different observers'also maps physical theory P 
onto itself. Such a group of transformations defines the 
postulated symmetries of the universe, and is the type of 
bias used by theoretical physicists. The transformations are 
parameterized by the relation between two different 
observers, such as their relative orientation or velocity. For 
example, Galileo defined the following transformation 
equations relating measurements for observers in constant 
relative velocity v parallel to the x-axis: 
{x' = x - vt. I' = r )  These transformations are consistent 
with Newton's theory of mechanics. 

The invariance principle defines a consistency 
relationship between physical theories and groups of 

transformations. The following definitions are standard and 
sufficient for our purpose of understanding and 
implementing Einstein's strategy for deriving special 
relativity. However, the reader should be aware that these 
definitions are a simple starting point for a deep, well 
developed mathematical theory that has had a profound 
impact on theoretical physics. (A good mathematical 
exposition focused on special relativity is [Aharoni 651. a 
more sophisticated philosophical and foundational 
treatment is [Friedman 831.) 

Below, Gis a transformation group. An invariant 
operation is a special case of a covariant operation. Laws 
are invariant if they define the same relation after they are 
transformed by the action of the transformation group. A 
sufficient condition for a theory to be invariant with respect 
to a transformation group Gis if all the operations are 
covariant and all the laws are invariant. 
Invariance of an operation or form: 
Invariant(op,G) e V(g E ~ , x l  ... x,,) 

op(x, 3 x2 9.. . . x, ) = op(g(x1. x* . . . ., x, )) 
Covariance of an operation or form: 
Covariant(op,G) @ 

V(g E G.xl . . .x , )  

V(g E G,xl ... x , )  
op(g(x1 .x2 ....* x, 1) = g(op(x1 *x2 9 .  .. . x, )) 

op(x,.x, 91. .  Jn)= g-l(op(g(x,,x2 ..... x , ) ) )  
Invariance of a physcial law expressed as a universally 
quantified equation: 

Invariant(V( ...) tl( ...) = t2( ...), G) e 
V(g E f j ,xl . . .x , )  

tl(x, .x, ,... .x,)  = t2(x1 .x2 .... , x,)  
= t l(g(x, .x, 9 .... x, )) = tZ(g(x1 .x2 ... .. x, )) 

More generally, a theory is invariant with respect to a 
transformation group Giff all the transformations in the 
group are automorphisms of the models of the theory. This 
is equivalent to proving that the theory and the 
transformation equations together imply the same theory in 
other frames of reference (though see [Friedman 831 for 
qualifications). 

Invariance of a theory I: 
Invariant(I,G) e 

1 V ( g E ~ ) l C I / g a n d I / g b I  
V(g E G) Models(I) s g(Models(l)) 

where I / g denotes substituting variables with the 
terms defined by the transformation equations 
Because of the inverse property of groups, 
the two conjunctions imply each other. 

V ( g E G ) l b  5Vg-l 
implies ~ ( g  E G)I / g t  (I / g-')/ g 
implies V(g E G) I / g t  I 
To check an invariant predicate, the Erlanger program 

back-substitutes transformation equations into a form or 
law and then compares the result to the original form or 
law. If the function or relation are the same, then the 

141 



invariant predicate is me. In essence the Erlanger program 
assumes the law holds good in the original reference frame 
and then transforms the law into measurements that would 
be observed in a new frame of reference. (This can be done 
independent of whether the law is invariant.) If these 
measurements agree with the law stated in the new frame 
of reference. then the law is invariant. The steps of the 
algorithm are described below and illustrated with the 
example of determining whether the Galilean 
transformations are consistent with the constant speed of 
light, Einstein’s second postulate. The input is the 
definition of the law for the constant speed of light, and the 
transformation equations relating variables in the original 
frame of reference to the variables in the new (primed) 
frame of reference: 
Invariant(x2 = C 2 t 2 ,  {x = x’+  vt’. t = t ’ ) )  

1. Solve the law in the new frame of reference to derive 
expressions for dependent variables (This t m s  a re!xion 
between variables into a disjunction of 2: ’  J f  

: 3 
substitute expressions in the new frame of referem. b r  

variables in the old frame ot reference; this yields a :,:w 
law relating measurements in the new frame of reference: 
(x’ + VI’)’ = c2rt2 

3. The substitutions derived in step 1 are applied to the 
new law derived in step 2: 

( ( c ~ ’ + v r # ) ~  = c 2 P .  (-ct8+  VI')^ = c2t8’) 

substitutions.): ( ( X ’  = Ct” .C’ = -CI ‘ ) )  

2. Use the parameterizc L transformation equatlr 

’ 4. If the law(s) derived in step 3 is a valid equality(ies). 
then the law(s) is invariant. For this example they an not, 
so the Erlanger program determines that Einstein’s second 
postulate is inconsistent with the Galilean transformations. 

Deriving a New Bias 
The invariance principle can be used not only to verify 

that a physical law is consistent with a particular bias. -’ut 
also to generate a new bias when a physical law is 
inconsistent with the current bias, as when the constant 
speed of light is inconsistent with the Galilean 
transformations. There are important structural aspects of 
the invariance principle that enabled this aspect of 
Einstein’s strategy to succeed. In particular, the consistency 
relationship is contravariant: a weaker physical theory is 
consistent with a larger set of transformations. (For the 
purposes of this paper, ‘weaker‘ can be thought of as ‘fewer 
deductive consequences’, though this is not entirely correct. 
This only holds if each law transforms into itself.) Thus 
when an inconsistency is detected between a bias 
represented by a set of transformations and an evolving 
physical theory. the physical theory can be relaxed, leading 
to an enlarged set of transformations. This enlarged set is 
then filtered to compute the new bias. 

Assume that a physical theory T (e.g. Newton’s 
mechanics) is consistent with a transformation group G 
(e.g. the Galilean group). Further assume that G is the 
largest transformation group consistent with T. Then a new 

empirical fact e is observed (e.g. the constant speed of 
light), such that e is not consistent with G. Then T is 
relaxed to T’ (e.g. Newton’s first law), thereby enlarging G 
to G’ (e.g. the set of all linear transformations). The new 
bias is the subset of G’, i.e. G”(e.g. the Lorentz group), 
such that T’ with e is consistent with G”. Then the laws in 
( T  - T? are transformed so that they are consistent with 
G”and have as limiting approximations the original laws. 
This section describes an implemented algorithm for 
deriving G”, while the next sections describe transforming 
the laws in (T - T?. These same algorithms can also be 
used when trying to unify theories with different biases, 
such as Newton’s mechanics and Maxwell’s 
electromagnetism. 

The Lorentz group is a set of transformations that relate 
the measurements of observers in constant relative motion. 
The Lorenu: group is a sibling to the Galilean group in the 
space of biases. Einstein’s derivation of the Lorentz 
transformations implicx + relied upon structural properties 
of the lattice of transformation groups. In particular, 
Einstein constrained the form of the transformations with 
an upper bound, derived tiom Newton’s fist law: a body in 
constant motion stays in constant motion in the absence of 
any force. This is his assumption of inertial reference 
frames. an assumption he relaxed in his theory of general 
relativity. The largest set of transformations consistent with 
Newton’s first law are the four dimensional linear 
transformations. Of these, the spatial rotations and 
spatiaVtemporal displacements can be factored out of the 
derivation. because they are already consistent with 
Einstein’s second postulate. (The Erlanger program does 
not currently have procedures implemented to factor out 
subgroups of transformations - these are under 
development.) This leaves an upper bound for a subgroup 
with three unknown parameters (a ,df)  whose independent 
parameter is the relative velocity (v): 

x =  a(x’+vt‘) t = &’+ft’ 
This upper bound includes both the Gaia -..n 

transformations and the Lorenu: transformations :.le 
DeriveNewBias algorithm takes the definition of an upper 
bound, such as the one above, including lists of the 
unknown and independent parameters, a list of invariants, a 
list of background assumptions, and information on the 
group propenies of the upper bound. When this algorithm 
is applied to Einstein’s second postulate of the constant 
speed of light, the derivation of the Loren& transformations 
proceeds along roughly the same lines as that in Appendix 
1 of [Einstein 19161. This derivation and others are 
essentially a gradual accumulation of constraints on the 
unknown parameters of the transformations in the upper 
bound, until they can be solved exactly in terms of the 
independent parameter which defines the relation between 
two reference frames. The algorithm is described below, 
illustrated with the example of deriving the Lorentz 
transformations. 

The input in this example to the DeriveNewBias 
algorithm is the upper bound given above, two invariants 
for a pulse of light - one going forward in the x direction 

1 4 2  



and one going backwards in  the x direction 
{ x  = ct.  x = -a}, the assumptions that the speed of light is 
not zero and that the relative velocity between reference 
frames is less than the speed of light, and information for 
computing the inverse of a transformation. The steps of the 
DeriveNewBias algorithm: 

1. Constraints on the unknown parameters for the 
transformation group are derived separately from each 
individual invariant. This step is similar to the procedure 
which checks whether a law is invariant under a 
transformation group. However, instead of steps 3 and 4 of 
that procedure. the system of equations from steps I and 2 
are jointly solved for constraints on the unknown 
parameters. For the two invariants f0r.a pulse of light, the 
derived constraints are: 

a = (-C% + cf) / (c  - v) .  a = (c2d + cf) / ( c  + v )  

2. The constraints from the separate invariants are 
combined through Mathematica’s SOLVE function. In the 
example of the Lorentz derivation, this reduces the 
unknown parameters to a single unknown 0: 

a=f, d = ( f v ) / c 2  
3. In the last step, the group properties are used to 

further constrain the unknown parameters. Currently the 
implemented algorithm only uses the inverse property of a 
group, but the compositional property is another SOurce of 
constraints that cou!d be exploited. First, the constraints on 
the unknown parameters are substituted into the upper 
bound transformation definition, yielding a more 
constrained set of transformations. For the Lorentz example 
this yields 

x =  f ( x ’ + v t ’ )  t = fr’  + f ix ’  1 c2 

Second, the inverse transformations are computed. The 
information given to the algorithm on the group properties 
of the upper bound define how the independent parameter 
for the transformation is changed for the inverse 
transformation. For relative velocity. this relation is simply 
to negate the relative velocity vector. This then yields the 
inverse transformations: 

x’ = f ( x  - V I )  r ’ = f l - ( j i J x ) l c 2  
The inverse transformations are then applied to the right 

hand side of the uninverted transformations, thereby 
deriving expressions for the identity transformation: 

x = f( f ( x -  V I ) +  v ( P  +)) 

These expressions are then solved for the remaining 
unknown parameters of the transformation (e.g.f), whose 
solution is substituted back into the transformations: 

= ++xp j J d z  & 1  
2 c - v  c + v  

The result is the new bias, which in this example is 
equivalent to the standard definition of the Lorentz 
transformations (the definitions above are in Mathematica’s 
preferred normal form). 

Limit Homomorphisms: Approximations 
between Theories. 

Once a new bias is derived, a learning algorithm needs 
to transfer the results of learning in the old bias space into 
the new bias space. Unless the relationship between the old 
bias and the new bias can be exploited, in the worst case 
this means running the learning algorithm with the new 
bias over all the examples used to derive the old theory. 
The shift in bias from the Galilean transformation group to 
the Lorentz transformation group required a global 
reformulation of all the theories of physics, from 
kinematics to fluid dynamics, and later quantum 
mechanics. Yet in all these reformulations, the relativistic 
theory was derived from its non-relativistic counterpart 
without exhaustively considering the experimental 
evidence justifying the non-relativistic theory. This was 
done by treating the non-relativistic theory as an 
approximation to the new, unknown relativistic theory; and 
combining this constraint with the Lorentz transformations 
to derive a corresponding relativistic theory. 

A theory such as Newton’s mechanics that has a high 
degree of experimental validation over a range of 
phenomena (e.g. particles interacting at low velocities 
compared to the speed of light), represents a summary of 
many experimental facts. If a new theory is to account for 
these same experimental facts, it must agree with the 
observable predictions of the old theory over the same 
range of phenomena. Hence the old theory must 
approximate, to within experimental error, the new theory 
over this range of phenomena (and vice versa). By showing 
that an old theory is a limiting approximation to a new 
theory, it is unnecessary to exhaustively reconsider all the 
experimental evidence justifying the old theory. This 
approximation criteria for partially validating a new theory 
is well accepted, both within scientific communities and 
within the philosophy of science. However, the 
development of relativity theory went beyond a posr-hoc 
verification of this approximation criteria: the 
approximation criteria was used to derive the new theory. 

Various notions of “approximation” have been 
developed in AI to support reasoning between approximate 
theories, and even generating approximate theories from 
detailed theories [Ellman 90,921. The problem of 
generating a new theory from an approximate theory and a 
new bias requires a precise definition of approximation 
with a well defined semantics. This section describes limit 
honwmorphisms. which are homomorphisms that only hold 
in the limiting value of some parameter. Limit 
homomorphisms can be viewed as an extension of fitting 
parameter approximations [Weld 92) with additional 
algebraic structure that adds the constraints needed to 

1 4 3  



derive the new theory, and not just model the 
approximation relation. 

A limit homomorphism is a map m from one domain to 
another such that for corresponding functionsf1 andj: ,he 
following equality converges as the limit expression RS 
to the limiting value: 

lim m(fi (XI .. .Xn >) = fi (m(+ ). .. m(X, 1) 
Another motivation for this definition of approximation 

is to resolve a fundamental disagreement between Kuhn’s 
view of the paradigm shift from Newtonian to relativistic 
physics, and the view of most physicists. Most physicists 
agne with the logical positivists: Newtonian physics is a 
limiting approximation of Einstein’s physics. Kuhn argues 
that this is spurious [Kuhn 62, pg. 1021. because the 
corresponding concepts in the relativistic and Newtonian 
mechanics are different. A limit homomorphism combines 
a map between corresponding concepts and a limiting 
approximation. thus achieving a limitinn approximation 
between two different conceptual domains. 

A well known type of limit homos .?ism within 
computer science is fl -order computati. .omplexity. 
For example, the n -order computationa: .Aexity of a 
sequence of program statements is the mu.  .mn of the n- 
order computational complexity of ii\e individual 
statements: 

To determine the Q -order computational complexity of a 
program. this limit homomorphism is recursively applied to 
the definition of a program. Similarly, to determine the 
non-relativistic quantity corresponding to a relativistic 
quantity, the appropriate limit homomorphism is 
recursively applied to the definition of the relativistic 
quantity. 

Within physics. limit homomorphisms define the 
relationship between new, unified theories and the older 
theories they subsume. If the mapping function m is 
invertible, the’i a limit homomorphism can be defined in 
the reverse &r -:tion. The limit homomorphisms between 
Newton’s me- iianics and different formulations of 
relativistic mechanics are invertible. Thus from an u priori, 
mathematical viewpoint neither Newtonian mechanics nor 
relativistic mechanics is intrinsically more general than the 
other - the mathematical relationship is symmetric: each is 
a limit homomorphism of the other. These theories agree 
on their predictions when velocities are low. but diverge as 
velocities approach the speed of light. Relativistic 
mechanics is a posrcriori more general becausc its 
predictions agree with experimental facts for high 
velocities, hence the theory is more generally applicable. 
Relativistic mechanics is also extrinsically more general in 
the sense that its bias is consistent with electrodynamics, 
and hence relativistic mechanics and electrodynamics can 
be unified. 

expr+viluc 

lim n(s1; s2;. . . s, ) = yaX(R(S, ).n(s, 1.. . .asn )) 
inpul--r- 

BEGAT: (BiasEd Generalization of 
Approximate Theories) 

While the intrinsic mathematical relationship between 
Newtonian and relativistic physics is not one of 
generalization Friedman 831. the process of generating 
relativistic mechanics from Newtonian mechanics is one of 
generalization. This section describes the mathematics 
justifying this process. and an implemented algorithm 
based on these mathematics that derives relativistic 
kinematics. Extensions currently undergoing 
implementation are described that will enable it to derive 
different formulations of relativistic dynamics. 

It is clear from a reading of [Einstein 19051 that 
Einstein derived relativistic mechanics from Newtonian 
mechanics, by treating the latter as a limiting 
approximation that was valid in low velocity refer-nce 
frames and applying the Lorentz transformations in xr 
to generalize to the relativistic laws. For exampi in 
section 10. paragraph 2 of [Einstein 19051: “If the elec ;on 
is at rest at a given epoch, the motion of the electron erwies 
in the next instant of time according to the equations 
[Newton’s equations of motion] ... as long as its motion is 
slow.” Einstein then generalized to the relativistic equation 
of motion by applying the Lorentz transformations to 
Newton’s equations of motion. Einstein even constrained 
the laws of relativistic dynamics to have the same form as 
Newtonian dynamics. 

This point needs to be made because [Kuhn 621. which 
many in AS take as a definitive source on scientific 
revolutions, argues otherwise with respect to the genetic 
relationship between Newtonian and relativistic mechanics 
[Kuhn 62. pg. 1031: “Though an out-of-date theory can 
always be viewed as a special case of its up-to-date 
successor, it must be transformed for the purpose. And the 
transformation is one that can be undertaken only with the 
advanuges of hinitsight, the explicit guidance of the more 
recent theory. .... t ~ t  it [the old theory] could not suffice for 
the guidance of research.” The first sentence is true. but the 
remaining part 01 ihe paragraph is demonstrably false as 
applied to Einstein’s derivation of relativistic mechanics. 
As is clear from the selection of Einstein’s paper in the 
preceding paragraph, Einstein not only used Newton’s 
theory to guide his .search for the proper relativistic laws, 
he transformed, with foresight, the old (Newtonian) laws to 
obtain the new (relativistic) laws. Few physicists or 
philosophers/historians of science currently subscribe to 
Kuhn’s interpretation. 

When both the old theory and the new theory comply 
with the invariance principle, then the difference in the 
biases will determine the limit point, Le. the range of 
phenomena over which they must agree. The following 
mathematical sketch explains what this limit point must be, 
when the theories postulate the .ume number of 
dimensions. The two biases will shiuc >ome subgroups in 
common (e.g. the spatial rotations) 2nd differ in other 
subgroups (e.g. the subgroup for relative velocity). For the 



subgroups that differ, the identity transformations will be 
the same. Hence the value of the parameter (e.g. relative 
velocity) that yields the identity transformation must be the 
limit point (e.g. 0 relative velocity). Furthermore, assuming 
that the transformations in the differing subgroups are a 
continuous and smooth function of their parameter(s), and 
that the functions in the respective theories are smooth and 
continuous, then the bounding epsilon-delta requirements 
for a limit are satisfied. 

Thus, given a new bias, the new theory must be derived 
so that it satisfies two constraints: the theory is invariant 
under the new bias, and the old theory is a limit 
homomorphism of the new theory. The limit 
homomorphisms between Newtonian physics and 
relativistic physics can be defined through the composition 
of tupling (or projections) that are invertible, with Lorentz 
Imnsformations applied to the various entities of the theory. 
Because the Lorentz transformations are also invertible, the 
composition is invertible. In other words, the limit 
homomorphism is defined through a standard 
homomorphism at the limit point, which will be denoted h ,  
and Lorentz transformations denoted g. 

The two constraints on the new theory, that it be 
invariant under the new bias and that it have as a limiting 
approximation the old theory, can be solved to generate the 
new theory when the limit homomorphism is invertible. 
The new theory and the limit homomorphism are derived in 
tandem. In essence, the msformations in the new bias are 
used to ‘rotate away’ from the limit point, as Einstein 
‘rotated’ a description of Newton’s equations for an 
electron initially at rest to reference frames in which it was 
not at rest. (Here ‘rotate’ means applying the 
transformations in the subgroups of the new bias not 
contained in the old bias, e.g. the Lorentz transformations.) 

For the operations of the new theory, these two 
constraints can often be directly combined as follows: 
1. New, unknown operation is covariant wrt new bias 

Equivalently: op(x, .x, .... J,,) = 8-l (op(g(x, ,x2 ..... x, 1)) 
2. New, unknown operation has limit homomorphism to old 
operation op’: 

op(g(x, .x2 ..... x, )) = g(op(x, .x2 ... . .x, )) 

lim h(op(x,  . x2 .... .x, )) = op’(h(x, ).h(x2 ..... h(x, )) 
1, *.J” + 

limit point 

Thus: op(x,,xz ,..., x,) = 

8- l  (h-’(op’(~g(xl)),h(8(x, ) )* . .* .h(g(xn)))))  
where g(x, .x2 ,..., x,) = limit point 

In words, the new operation is obtained by : 
1. Finding a transformation g that takes its arguments to 

a reference frame where the old operation is valid. 
2. Applying the inverse transformation to define the 

value of the new operation in the original reference frame. 
Applying BEGAT to derive the laws of the new theory 

is a similar two step process: first, a transformation is 
determined that takes the variables to a reference frame in 
which the old laws are valid. and then the inverse 

transformations are symbolically applied to the equations 
for the old laws. 

The algorithm is underconstrained. because of the 
interaction of the definition of the new (unknown) 
operation and the definition of the (unknown) 
homomorphism h. In parts of [Einstein 19051, Einstein 
assumes that h is the identity, for example in his derivation 
of the relativistic composition of velocities ( described 
below), and then derives an expression for the new 
operation. In other parts of [Einstein 19051. he assumes that 
the old operation and the new operation are identical, for 
example in his derivation of the relativistic equation of 
motion. In that derivation he kept the same form as the 
Newtonian equation (Le. force = mass * acceleration) and 
then solved for a relativistic definition of inertial mass, and 
hence h. To his credit, Einstein recognized that he was 
making arbitrary choices [Einstein 1905 section 10. after 
definition of transverse mass]: “With a different definition 
of force and acceleration we should naturally obtain other 
values for the masses.” 

The following illustrates how the BEGAT algorithm 
works for a simple operation when h is the identity. 

Note that when h is the identity: op(x, .x2 ,..... r,) = 

BEGA? && as ’input the definition of the old 
operation, the list of transformations for the new bias, and a 
definition of the limit point. For the composition of 
velocities, the old operation is simply the addition of 
velocities: 

v l  is the velocity of reference frame R, w.r. t. R, 
v2 is the velocity of object A w.r. t. reference frame R, 
and the output is defined in reference frame Ro 

Newton - Compose(vl,v2) = vl+ v2 where: 

The transformations are the Lorentz transformations 
derived earlier. The limit point is when R, is the same as 
R,. i.e. VI  = 0. The first part of the reasoning for the 
BEGAT algorithm is at the meta-level, so it is necessary to 
understand some aspects of the notation used in the 
Erlanger program. Variables are represented by an 
uninterpreted function of the form: 

var[event, component, reference-frame]. This form 
facilitates pattern matching. Transformations have 
representations both as lists of substitutions and as a meta- 
level predicate of the form: 

p m e t e r ]  The independent parameter for relative velocity 
has the form: var[end-framerelveloity~tart-framel. Thus 
v l  is represented, as var[R,,relvelocity.R,l and v2  as 
var[A.velocityR, I. 

1. BEGAT first solves for g. the transformation which 
takes the arguments to the limit point. This transformation 
maps the reference frame for the output to the reference 
frame for the limit point. The result is obtained by applying 
a set of rewrite rules at the meta-level: 

Transform[start-frame, end-frame, independent- 

TransformlR,R, .var[R,selvelocity,R, I1 

145 



This transformation maps reference frame R, to 
reference frame R,. 

2. BEGAT next solves for the value of the variables 
which are given to the old operation, i.e. Avl). g(v2). For 
g(v1)  it symbolically solves at the meta-level for: 

Appl y [Transform[R,R, ,var[R,,relvelocityRl]], 
varCR, ,rehelocity, R,]], 

obtaining var[R,,relvelocityR,], i.e. Avl)=O 
Forg(v2) it symbolically solves at the meta-level for: 
Apply[Transform[R,R, ,var[R,.relvelocityRlll. 

var[A,velocity. 
R,l1. 

obtaining var[A.velocity,R,]. i.e. 8(v2)=v2 since v2 is 
measured in R,. 

This meta-level reasoning about the application of 
transformations is necessary when the input variables and 
the output variables are defined in different reference 
frames. 

3. BEGAT next symbolically applies the old operation 
to the transformed variables: 

Newton - compose(g(vl),g(v2)) = 0 + v2 = v2 
4. BEGAT finally applies the inverse transformation to 

this result to obtain the definition for the relativistic 
operation: Relativisticcompose(vl.v2) = 

Apply~ransformlRI.Ro.varlR, selvelocityP Jl. 

The transformation derived previously for velocities is 
now applied to var[A.velocity, R,], yielding the definition 
of the operator for relativistic composition of velocities: so 
BEGAT calls DeriveCompositeTransformation with the 
definition for velocity (i.e.V = &/&). and the Lorentz 
Transformations for the components of the definition of 
velocity - namely the transformations for the x co-ordinate 
and the time co-ordinate derived earlier. 
DeriveCompositeTransformation then symbolically applies 
these transformations to the components of the definition, 
and then calls Mathematica's SOLVE operation to 
eliminate the Ar, At components from the resulting 
expression. The result is the same definition as Einstein 
obtained in section 5 of [Einstein 19051: 

var[A,velocity, R, 11 

Relativistic-compose(vl.v2) = (vl+v2)/(1 +(vlv2)/c2) 

Deriving Relativistic Dynamics 
This subsection describes how the invariance principle 

can be used to derive other components of the new theory 
and the limit homomorphism, illustrated with one 
derivation of relativistic dynamics. Different background 
assumptions lead to different limit homomorphisms m and 
different formulations of the equations for relativistic 
dynamics. In his original paper, Einstein reformulated the 
Newtonian equation by measuring the force in the 
reference frame of the moving object and the inertial mass 

and acceleration in the reference frame of the observer. (In 
essence, Einstein did not complete step 2, for reasons too 
complex to explain here.) This leads to a projection of the 
Newtonian mass into separate transverse and longitudinal 
relativistic masses. 

A subsequent formulation of relativistic dynamics 
consistently measures masses, accelerations, momentum 
and energy in the reference frame of the observer, resulting 
in a single relativistic mass that varies with the speed of the 
object. In this formulation the mass of a system is the sum 
of the masses of its components, and is conserved in elastic 
collisions. The modern formulation of relativistic 
dynamics. based on Minkowski's space-time and Einstein's 
tensor calculus, requires that components that transform 
into each other be tupled together. Thus because time 
coordinates transform into spatial coordinates. time and 
space are tupled into a single 4-vector. Consequently 
energy and momentum are also tupled together. In this case 
m maps Newtonian inertial mass to rest mass, and maps 
Newtonian acceleration and forces to their 4-vector 
counterparts. 

In all three cases the derivation strategy is based directly 
on the invariance principle and the principle that the non- 
relativistic theory be a limiting approximation to the 
relativistic theory. The strategy is to assume that the laws 
of dynamics are invariant under the Lorentz 
transformations, and then to solve for the limit 
homomorphism that makes them invariant. (If it is not 
possible to consistently solve for the limit homomorphism, 
then the theory cannot be invariant.) These limit  
homomorphisms are composed of two maps: fiist a tupling 
or projection map from the components of the original 
theory to components of the new theory (H) ,  and second 
of Lorentz transformations for components of the new 
theory(G). These two maps are generated by the 
derivations. 

Derivations based on the tensor calculus are the most 
elegant because the tensor calculus is essentially a syntactic 
encoding G I  .he invariance principle, as applied to biases 
defined by qoups of linear homogenous transformations. 
However, sn explanation of the grouptheoretic basis of the 
tensor calculus is beyond the scope of this paper. Instead 
we will describe the justification and strategy that applies 
to the first two derivations of relativistic dynamics, and 
then illustrate it with pan of Einstein's original derivation. 
This derivation has been partially simulated in interactive 
mode with Mathematka 1.2. The justification and steps of 
this derivation an also the same as that for relativistic 
electrodynamics; more specifically, the derivation of the 
L m n a  transformations for electric and magnetic fields. 

Recall the defmition of the invariance of a theory under 
a transformation group G , where 5fT is the new theory: 

Invariant(&7.G) W H  E G)%T / gb %T 
This is combined with the constraint that the old theory 

is a limit homomorphism of the new theory, where L3c is 
the definition of the components of the old theory in terms 
of the components of the new theory: 

!?@uf3(c M 

146 



When the limit homomorphism is invertible, we also 
have: 

mUrm= 
Because this inverse limit homomorphism can be 

factored into a tuplingjprojection map H and the new bias 
G.  this last constraint can be combined directly with the 
invariance principle to yield a single constraint between the 
old theory and the new theory. : 

wll E @(mu W l  d= m 
By the definition of a limit homomorphism, the old 

theory is defined with respect to the reference frame for 
which the limiting value holds (e.g. zero relative velocity). 
The transformations in G take the result of applying the 
tupling/projection map Hto this reference frame and 
transform it to all other reference frames. The constraint is 
satisfied when the new theory, defined with respect to any 
reference frame le, is a consequence of the old theory, the 
tupling/projection map H ,  and the vansformation g from 
the reference frame for the old theory to the reference 
frame R .  We will now show how this constraint can be 
used to derive the new theory. illustrated with Einstein's 
derivation of relativistic dynamics. 

In all derivations of relativistic dynamics, it is assumed 
that the new equation has the same form as the Newtonian 
equation, but that the definition of the components might 
be different; according to X and c j .  Thus if X and c j  are 
partially known. say X' and G' are defined for some of the 
components, then the remaining parts of 31 and Gare 
derived by setting up the following unified constraint and 
solving for the remaining parts of the limit homomorphism: 

where M' has the same form as the Newtonian theory 
but with new variables which are functions of 
corresponding variables in Or and the parameters of the 
transformation group c j  . 

Einstein's derivation of relativistic dynamics proceeded 
as follows. First, the old theory (07) was Newton's 
dynamics relating a particle's inertial mass, acceleration. 
and the force exerted upon the particle (Einstein considered 
the case where the force was exerted by an electric field 
with a particle of charge E ) .  This law is valid in the 
reference frame of the particle: 

v(g€c j ) (MuX' )1g ' t  M' 

EE, 
d2r d2Y m y =  

d2x  
M ~ m ~ = E E x  

dt m z = E E y  dt 
Through previous derivations, H' and G' were known 

for space, time, and electromagnetic fields: though Einstein 
did not use the transformations for the electromagnetic 
field. The map H' for space and time was the identity, 
while cj' was the Lorentz transformation equations for 
space and time generated by DeriveNewBias. (A different 
background assumption where H' tuples space and time 
into a single 4-vector would yield the tensor formulation of 
relativistic dynamics). Thus Einstein needed to solve for 
the relativistic definition of inertial mass as a function of 
the non-relativistic mass and the parameter of the Lorentz 

transformation group: namely, the relative velocity 
between reference frames. Because the relative velocity is a 
vector quantity with x.y,r components: the definition of the 
inertial mass is also set up with x.y,r components. These 
components of the inertial mass might later be identified. In 
the following, v is the relative velocity between the 
reference frame of the particle and an observer moving in 
the positive x direction, and p is a term defined with 

The 
respect to the magnitude of v: p =  

unprimed variables are in the reference frame of the 
particle, while the primed variables are in the reference 
frame of the observer. The constraint relating Newton's 
dynamics, the Lorentz transformations. and relativistic 
dynamics is instantiated from the unified constraint above: 

x = P ( x ' + v t ' )  1 

Note that Einstein defines the force in the reference frame 
of the particle, even on the right hand side. The equations 
for Newton's dynamics are then partially transformed into 
the reference frame of the observer by applying the Lorentz 
transformations. yielding a simplified constraint: 

m:(m.v)-= d2x' EEx 
df'2 
d2y' 
d f 2  
d2r' 
d t 2  m:(m,v)- = &fjz 

m;(m,v)- = EE, 

This constraint is then solved for definitions of the 
relativistic inertial mass in terms of the Newtonian inertial 
mass and the parameter between the reference frame of the 
particle and the observer. Solving this constraint is a simple 
directed inference problem [Smith 911; reasoning 
backwards from the right hand side a match is derived 
between the variables for the relativistic inertial mass and 
terms on the left hand side: 

mi(m,v) = mp3 
m;(tn,v)=m/P 
m;(m,v) = mS2 
The definitions for the y and z components of the 

inertial mass are identical, so they can be combined into a 
single 'transverse' inertial mass. In alternative derivations 
of relativistic dynamics, all the components of the inertial 
mass are identical. 

While the particular derivation tactics currently 
implemented or undergoing implementation in the BEGAT 
algorithm might not be directly applicable to other types of 
biases, it is likely that analogues can be found. Research 

147 



toward generahzing BEGAT is described after a review of 
related work. 

Related Research 
Within AI, this research is related to scientific discovery 

and theory formation [Shrager and Langley 901, qualitative 
physics [Weld and de Kleer 901. change of bias in machine 
learning [Benjamin 90a1, and use of group theory 
[Benjamin 90bl. The research in this paper appears to be 
the F i t  addressing the automated rediscovery of scientific 
revolutions of twentieth century theoretical physics. Most 
of the work in scientific theory formation has been on 
incremental theory revision (normal science). Previous 
research on scientific revolutions includes conceptual and 
qualitative accounts of the geological revolution in plate 
tectonics [Thagard and Nowak 901 and tCe chemical 
revolution of the oxygen theory [O'Rork, .lams, and 
Schulenburg 901. Recently, [Thagard 92' , addressed 
automating the comparison of competing .:ories. and 
applied it to comparing Einstein's relativity ,,ieories with 
competing theories. 

The notions of approximation within qualitative physics 
are closely related to limit homomorphisms. The well 
known calculii for qualitative physics reasoning usually 
include some sort of homomorphism from the reds Forbus 
841 [Kuipers 861. The use of limits (fitting parameters) to 
define approximation relations between models is 
described in [Weld 891. Within machine learning, research 
on declarative representations and reasoning about bias is 
most important, see the collection of papers in [Benjamin 
%I. The research described in this paper is one approach 
to addressing an open problem presented in [Dietterich 911: 
analytically comparing biases. The declarative bias used in 
theoretical physics is group theory. A good collection of 
papers, many of which focus on the use of group theory in 
AI reasoning and problem solving. is in the workshop 
proceedings [Benjamin 90bJ. 

The mathematical model and the research strategy 
presented in this paper are consistent with the physics 
literature. References accessible to the layman include [Zee 
861 and [Davies and Brown 881. With respect to that 
literature the chief innovations of this paper are the result 
of focusing on the structure of derivations with the aim of 
formalizing them. This focus is peculiar to AI: to the best 
of my knowledge it has not been addressed before. The 
closest previous works may be various pedagogical 
explanations found in textbooks such as [Skinner 821. 
[Taylor and Wheeler 661, and [French 681. 

Conclusion: Toward Primal-Dual Learning 
A hypothesis of this research is that Einstein's strategy 

for mutually bootstrapping between a space of biases and a 
space of theories has wider applicability than theoretical 
physics. Below we generalize the structural relationships of 
the invariance principle which enabled the computational 

steps of Einstein's derivation to succeed. We conjecture 
that there is a class of primal-dual learning algorithms 
based on this structure that have similar computational 
properties to primal-dual optimization algorithms that 
incrementally converge on an optimal value by alternating 
updates between a primal space and a dual space. 

Let 9 be a set of biases with ordering relation a that 
forms a lattice. Let I be a set of theories with ordering 
relation 4 that forms a lattice. Let Cbe a consistency 
relation on B x I  such that: 

C(b,t) and b' Q b * C(b',t) 
C(b, t )  and t' 4 t C(6,t') 

This definition is the essential property for a well- 
structured bias space: As a bias is strengthened. the set of 
theories it is consistent with decreases: as a theory is 
strengthened, the biases it is consistent with decreases. 
Hence c define5 a contravariant relation between the 
ordenr.: in biaw snd the ordering on theories. 

be the .*. -:. bias function from I + 'B such that Lr .  
C ,  I.r)and ~ t ( b , r ) ~ b ~ ' U ( r ) . L e t I , b e a f u n c t i o n  
from B x I -, 3 such that D(6. t )  = b A a([). where A is 
the lattice meet operation. 

I, is the DeriveNewBias function, which takes an 
upper bound on a bias and filters it with a (new) theory or 
observation to obtain a weaker bias. (For some applications 
of primaldual learning, D should take a lower bound on a 
bias and filter it with a new theory or observation to obtain 
a stronger bias. ) I, is welldefined whenever B ,  I, and c 
have the properties described above. However, depending 
on the type of bias, it might or might not be computable. If 
it is computable, then it defines the bootstrapping from the 
theory space to the bias space when an inconsistency is 
detected. 

The bootstrapping of BEGAT from a new bias to a 
new theory that has a limiting approximation to the old 
theory requires two capabilities. First, given the old bias 
and the new sibling bias, the restriction of the old theory to 
those instances compatible with the new bias must be 
defined and computable. Second, given this restriction. its 
generalization by the new bias must also be defined and 
computable. 

As an example of BEGAT with a different type of 
bias, consider the problem of learning to predict a person's 
native language from attributes available in a data base. We 
will assume that one's native language is the same as the 
language spoken by one's mother, but that the mother's 
language is not in the data base. A declarative 
representation for biases that includes functional 
dependencies was presented in [Davies and Russell 871 and 
subsequent work. Let the original bias be that the native 
language is a function of the birth place. This bias would 
likely be consistent with data from Europe, but might be 
inconsistent with 'ne data from the U.S. because of its large 
immigrant p0puili.m. Assume that a function I, derives a 
new bias where :?e native language is a function of the 
mother's place of origin. The following l imi t  

148 



homomorphism formalizes the intersection of the original 
bias and the new bias: 

lim mother's - origin(x) = birth - place(x) 
Uimmigranrr+O 

The restriction of the original theory to concepts 
derived from the limiting value (e.g. non-immigrant data) is 
compatible with this new bias. Furthermore, the concepts 
learned from this restricted set can be transferred directly to 
the new theory by substituting the value of the birth place 
attribute into the value for the mother's place of origin. 

Future research will explore the theory and application 
of primal-dual learning to theoretical physics and other 
domains. Given the spectacular progress of twentieth 
century physics. based on the legacy of Einstein's research 
strategy, the computational advantages of machine leaming 
algorithms using this strategy might be considerable. 

Acknowledgments 
Thanks to Robert Holte. Laura Jones, Hugh Lowry, 

Thomas Pressburger, and Jeffrey Van Baalen for their 
many helpful comments on improving this paper. 

References 
Aharoni, J. 1965. The Special Theory of Relativity. New Yo*: 

Dover. 
Benjamin, P. editor. 1990a. Change of Representation and 

lnductive Bias. Boston: Kluwer. 
Benjamin, P. editor. 1990b. Workshop Proceedings for Algebraic 

Approaches to Problem Solving ami Perception. June 1990. 
Davies, P.C.W. and J. Brown 1988. Superstrings: A Theory of 

Everything? Cambridge University Press. 
Davies. T. R. and Russell, S.J. 1987. A Logical Approach to 

Reasoning by Analogy. In UCAI-87. 
Dietterich. T. 1991. Invited Talk on Machine Learning at 

AAAI91. Los Angeles. CA. 
Einstein, A. 1905. On the Electrodynamics of Moving Bodies. In 

The Principle of Relativity, A Collection of Original Memoirs 
on the Special and General Theory of Relativity. contributors 
H.A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl. 
NewYork: Dover (1952). 

Einstein, A. 1916. Relativity: The Special and General T h e w .  A 
clear explanation that anyone can understand. New York 
Crown. 

Ellman. T. editor. 1990. AAAI90 Workshop proceedings on 
Automatic Generation of Abstractions and Approximations. 
Boston, MA. 

Ellman. T. editor. 1992. AAAl902 Workshop proceedings on 
Automatic Generation of Abstractions and Approximations. 
San Jose. CA. 

Forbus K.D. 1984. Qualitative Process Theory. Art i f ic ia l  
Intelligence(24):85 - 1 68. 

French, A. P. 1968. Special Relativity. New York Norton. 
Friedman, M. 1983. Foundations of Space-Time Theories: 

Relarivistic Physics and Philosophy of Science. New Jersey: 
Princeton University Press. 

Kuhn. T. S. 1962. The Structure of Scientific Revolutions. 
Chicago: University of Chicago Press. 

Kuipers. B. 1986. Qualitative Simulation. A r t i f i c i a l  
Intelligence(29): 289-388. 

Minkowski, H. 1908. Space and Time. In The Principle of 
Relativity. A Collection of Original Memoirs on the Special ond 
General Theory of Relativity, contributors H.A. Lorentt. A. 
Einstein, H. Minkowski, and H. Weyl. NewYork: Dover 
(1952). 

ORorke, P.. Morris, S. and D. Schulenburg 1990. Theory 
Formation by Abduction: A Case Study Based on the Chemical 
Revolution. In Computational Models of Scientific Discovery 
Md Theory Formation. editors J. Shrager and P. Langley. 

Shrager. J. and Langley, P. eds. 1990. Computational Models of 
Scientific Discovery and Theory Formation, editors. San 
Mateo: Morgan Kaufmann. 

Skinner, R. 1982. Relativity for Scientists and Engineers. New 
York Dover. 

Smith, D.R. 1982. Derived Preconditions and Their Use in 
Program Synthesis. In Sixth Conference on Automated 
Deduction. ed. D.W. Loveland. 172-193. Lecture Notes in 
Computer Science, volume 138. Berlin: Springer-Verlag. 

Taylor, E.F. and Wheeler, J.A. 1966. Spacetime Physics. San 
Francisco: Freeman. 

Thagard P. and G. Now& 1990. The Conceptual Structure of the 
Geological Revolution. In Computational Models of Scientific 
Discovery and Theory Formation, editors J. Shrager and P. 
Langley. 

Thagard, P. 1992. Conceptual Refiolutions. Princeton, New 
Jersey: Princeton University Press. 

Valiant, L.G. 1984. A Theory of the Learnable. In C A C M  

We1d.D.S. 1989. Automated Model Swithching: Discrepency 
Driven Selection of Approximation Reformulations. University 
of Washington Computer Science Department Technical 
Report 894841. 

Weld D.S. and de Kleer. J. eds. 1990. Readings in Qualitative 
Reasoning about Physical Systems. editors. San Mateo. CA: 
Morgan Kaufmann. 

Weld, D.S. 1992. Reasming about Model Accuracy. University 
of Washington Computer Science Department Technical 
Report To appear in Artificial Intelligence. 

Zee. A. 1986. Fearful Syminetry: The Search for Beauty in 
Modem Physics. New York Macmillan. 

(27): 1134-1 142. 



P r  i e d i  t is 

I 

Becoming Reactive By Concretization 
Armand Prieditis md Bhaskar !anakiraman 

Departmen )f Computer :ience 
Unive-,ity of Califorxa 

Davis. CA 95616 

Abstract 

One way to build a reactive system is to construct an action table 
indexed by the current situation 01 stimulus. The action table de- 
scribes what course of action to pursue for each situation 01 stim- 
ulus. This paper describes an incremental approach to construct- 
ing the action table through achieving goals with a hierarchical 
search system. These hierarchies are generated with transforma- 
tions called concrefizofiom. which add constrainu to a problem 
and which can reduce the search space. The basic idea is that an 
action for a state is looked up in the action table and executed 
whenever the action table has an entry for that state; otherwise, 
a path is found to the nearest (cost-wise in a graph with cost- 
weighted arcs) state that has a mappring from a state in the next 
highest hierarchy. For each state along the solution path, the suc- 
cessor state in the path is cached in the action table entry for that 
state. Without caching, the hierarchical search system can loga- 
rithmically reduce search. When the table is complete the system 
no longer searches: it simply reacts by proceeding to the state 
listed in the table for each state. Since the cached information 
is specific only to the nearest state in the next highest hierarchy 
and not the goal, inter-goal transfer of reactivity is possible. To 
illustrate our approach. we show how an implemented hierarchical 
search system can completely reactive. 

1 Introduction and Motivation 
Intelligent interaction with the world can be viewed as 
a combination of planning to achieve some goal and of 
reaction to external stimuli in the course of executing 
a plan. A pure planning system produces a c '1Dlete 
plan of actions before executing it [J, 8, 3. j-:. In 
contrast, a pure reactive system quickly selects and ex- 
ecutes a single action based on an external stimulus [2, 
1, 61. Planning systems appear to work well when the 
predictability of the world is precisely captured in the 
planner's actions, whereas reactive systems appear to 
work well in worlds that an fraught with uncertainty 
or unpredictability-where plans have little chance of 
succeeding in their entirety, where the ability to plan to 
completion is not a virtue. This paper describes how a 
planning system can incrementally become more reac- 
tive through interaction with its world, By becoming 
more reactive, the system reduces its decision-making 
time. 

Previous approaches to building reactive systems 
from non-reactive ones include compilation and leam- 
ing from examples. Firby [5] and Rosenschein [13] 
show how to compile high-level input descriptions of 

actions and goals into reactive systems. Similarly, 
Rosenschein and Kaelbling describe a technique to 
compile constraint expressions into directly executable 
circuits for a robotic control system [14]. Mitchell 
uses Explanation-Based Learning to incrementally 
leam the general conditions under which a particu- 
lar action, which helps achieve a particular planning 
goal, should be applied [lo]. If the conditions are 
matched, the same action is applied-irrespective of 
the system's current goal. The advantage of learning 
over compiling is that examples focus on those parts 
of the environment with which an intelligent agent ac- 
tually interacts; only those actions that are relevant to 
that interaction are compiled for reactivity. 

The problem with the Explanation-Based Leaming 
approach is that multiple goals can lead to multiple 
action suggestions for the same state, which results in 
deliberation as to which action to apply and therefore 
less reactivity. This anomaly is commonly called 
the wandering borrleneck problem in the machine 
leaming literature: as a result of eliminating one time 
bottleneck (e.g. time taken to react) another one 
unexpectedly arises (e.g. time taken to decide how to 
react). More precisely, in a problem with n problem- 
solving states, each state can have as many as n 
possible action suggestions since there can be as many 
as n goals from which the action suggestions are 
leamed. Moreover. to store such a network of states 
and actions can require as much as O( nz log n) space 
over n goals and n states, since O(1ogn) space is 
requid  to store each action suggestion. If n is an 
exponential of problem size. then this approach is 
generally not feasible. 
This paper describes a technique to avoid the wan- 

dering bottleneck problem by hierarchically organiz- 
ing the state space such that at most one action is 
learned for each state. As a side-benefit, this hierar- 
chical organization reduces the worst-case space I 
quirements by a factor of n. 

The rest of this paper is organized as follows. S e i -  
tion 2 defines the notion of a concretization and de- 
rives several important properties of concretizations in 

150 



search. Section 3 describes our approach to becoming 
reactive by concretization. Section 4 presents experi- 
mental results of applying our approach. Finally, Sec- 
tion 5 summarizes the conclusions of this work and 
discusses a few promising avenues of future research. 

2 Concretizations 

Intuitively, a concretization of a problem is one that 
has added constraints. The importance of these added 
constraints is that they reduce the branching factor dur- 
ing search. To formalize this intuitive notion requires 
a definition of search. The definition that we will as- 
sume is standard in the AI  literature [ll].  A search 
problem can be thought of as consisting of a graph of 
nodes, which represent states, and directed arcs that 
represent the application of an operator. These arcs 
are typically weighted to represent the cost of apply- 
ing the corresponding operator. Search can be thought 
of as finding a finite path in the graph from a node rep- 
resenting a given initial state to a node representing a 
given goal state. The graph can be specified explicitly 
or implicitly. In an explicit specification, the nodes 
and arcs with associated costs might be supplied in 
a table that includes every node in the graph and a 
list of its successors and the costs of associated arcs. 
This information might also be specified by a matrix 
that stores the costs of associated arcs for every pair 
of nodes (an infinite cost arc represents the absence of 
an arc). In an implicit specification, only that portion 
of the graph that is sufficient to include a goal node 
is made explicit by applying operators using a search 
algorithm such as A* [ll]. For example, in the Eight 
Puzzle problem, the set of states consists of al l  tile 
permutations and operators only allow swapping the 
blank with an adjacent tile (i.e. the cost function on a 
pair of states returns 1 if one state is reachable from 
the other by swapping the’blank with an adjacent tile, 
and 00 otherwise). The goal state might specify that 
the tiles are in a particular order. 

More formally, let a search problem be a 3-tuple 
(S, c). where S is a set of states describing situations 
of the world; c : S x S -+ 3 is a positive cost function 
that represents the cost of applying the corresponding 
action from one state to another, and G C S is a set of 
goal states. An instance of a search problem includes 
a 2-tuple ( i , g )  where i E S is the initial state and 
g E S is the goal state (for simplicity, we assume that 
there is only one goal state). The objective is to find 
a finite length finite cost path from i to 9. 

A problem (S’,c’) is a concretization of another 
problem (S,c) with respect to 4 : S’ -+ S iff 4 
reduces cost: (Vs’, t’ E S ’ ) C ( ~ ( S ’ ) ,  $(t’)) 5 c(s’, t ’ ) .  

For example, Figure 1 shows a concretization of 
the Towers of Hanoi problem. The original problem 
is composed of operators that stack smaller disks on 
top of larger disks from pin to pin; states are simply 
disks stacked in increasing size on various pins. The 
initial and goal states for a typical three disk instance 
of the Towers of Hanoi problem are also shown in 
the figure. If the disks are numbered from top to bot- 
tom and then the operators are constrained such that 
they never place an odd-numbered disk on an even- 
numbered disk and vice versa, then this new problem 
is concretization of the original problem with respect 
to a mapping function that ignores disk parity. The 
reason is because the cost is reduced: operators apply 
more often in the original problem. Notice that any so- 
lution in the concrete space is guaranteed to be a solu- 
tion in the original space because the concretized prob- 
lem is more restricted. Since the branching factor will 
be lower for the concretized problem, solution gen- 
eration will be more efficient (though slightly longer 
solutions will generally result). This property, which 
we call solution-soundness, is perhaps most powerful 
when a problem can be concretized into one for which 
an efficient solution generator exists. Any solution to 
the concretized problem can then be directly mapped 
onto a solution to the original problem. For example, 
a Blocks World problem with three table locations can 
be concretized into a Towers of Hanoi problem, which 
has an associated divide-and-conquer algorithm, by as- 
signing a “size” to each block (say, small to large for 
each block on every stack, consistent in the initial and 
goal states). Any solution to the corresponding Tow- 
ers of Hanoi problem can be mapped onto a solution 
to the original problem simply by ignoring size. 

Tenenberg describes a similar property, which he 
calls the downward solution property, in the context 
of planning with a certain type of operator representa- 
tion [16]. In his terminology, a transformed problem 
has the downward solution property if every solution 
in the transformed space can be mapped onto one for 
the original problem. Solution soundness is a gener- 
alization of the downward solution property since it 
does not depend on specific operator representations. 

Despite the solution-soundness property of con- 
cretizations, a solvable problem in the original space 

151 



IO 1 

Figure 4 Becoming Reactive Through Interaction with the World 

only those states that are most frequently encountered 
or apply leaming techniques to reduce table size. In 
particular, we are currently investigating applying our 
ideas to a less artificial problem (a robot routing task), 
which includes explicitly specified operators with in- 
puts from external sensors such as in a robot routing 
task. It might be possible to apply Explanation-Based 
or inductive learning to learn the class of states hat 
lead to the nearest state in the next highest hierarchy. 

Another problem is that constructing concretization 
hierarchies is generally a difficult problem. However. 
a catalog of problem transformations such as those of 
Absolver I1 [ 121 might prove helpful. Another method 
might be to use clustering algorithms to group simi- 
lar states into equivalence classes. Problem-solving 
performance with morc meaningful groupings-thos 
that exploit the structure of the search graph and sim- 
ilarity of states-should be improved over the results 
we obtained with random hierarchical groupings. 

Ultimately, we would like to test our ideas in a 
dynamic world where an intelligent agent’s plans to 
achieve goals are continually thwarted by unforeseen 
events to which the Jgent has to react immediately, 
recover, and then F:oceed towards achieving the goal. 
We believe that a herarchical learning system of the 
sort described here may be especially suited for such 
worlds. We are currently modeling a dynamic world 

* 

and testing this hypothesis. 

References 

[ 13 P. Agre and D. Chapman. Pengi: An implementa- 
tion of a theory of &vity. In Proceedings A4 : - 
87, pages 268-272. kattle. WA, 1987. Amen 
Association for Aniricial Intelligence. 

121 R.A. Brooks. A robust layered control system tor 
a mobile robot. IEEE Journal of Robotics and 
Automation. 2(1), March 1986. 

[3] D. Chapman. Planning for conjunctive goals. 
Artificial Intelligence, 32(3):333-378, 1987. 

[41 R. Fikes. P. Hart, and N. J. Nilsson. Learning and 
executing generalized robot plans. Artificial Intel- 
ligence, 3(4):251-288, 1972. Also in Readings in 
Artificial Intelligence, Webber, B. L. and Nilsson, 
N. J., (Eds.). 

[5] J. Firby. Adaptive Execution in Complex Dynamic 
Wor&. PhD thesis, Yale University, 1989. 

[6] L Kaelbling. An architecture for intelligent reac- 
tive systems. In M. Georgeff and A. Lansky, ed- 
itors. Reasoning about Actions and Plans: Pro- 
ceedings of the I986 Workshop. Morgan Kauf- 
mann. 1986. 

152 



[7] L. Kleinrock and F Kamoun. Hierarchical routing 
for large networks. Computer Nenuorks, 1 : 155- 
174, 1977. 

[SI R. Korf. Depth-first iterative-deepening: An opti- 
mal admissible tree search. Artificial Intelligence, 

[9] R. Korf. Planning as search: A quantitative ap- 
preach. Artificial Intelligence. 33(1):65-88. 1987. 

Proceedings of the Eighth National Conference 
on Artificial Intelligence, Boston, MA, July 1990. 
American Association for Artificial Intelligence. 

[ 111 N. J. Nilsson. Principles of Artificial Intelligence. 
Morgan Kauhann, Palo Alto, CA, 1980. 

[ 121 A. Prieditis. Machine discovery of effective ad- 

27(2) :97- 109, 1985. 

, 

I 
[ 101 T. Mitchell. Becoming increasingly reactive. In 

I 

I 
I 

missible heuristics. Machine Learning, October 
1992. To Appear. 

[13] S. Rosenschein. Formal theories of knowledge 
in ai and robotics. New Generation Computing, 

[ 141 S. Rosenschein and L. Kaelbling. The synthesis of 
digital machines with provable epistemic proper- 
ties. In Theoretical Aspects of Rearoning about 
Knowledge, pages 83-98, San Mateo, CA, 1988. 
Morgan Kaufmann. 

[ 151 E. Sacerdoti. Planning in a hierarchy of abstrac- 
tion spaces. Artificial Intelligence, 5 :  115-135, 
1974. 

[ 161 J. Tenenberg. Abstraction in Planning. PhD thesis, 
University of Rochester, 1988. 

(3):345-357, 1985. 

153 



F- Tong 

Reformulating Constraints for Cornpilability and 
Efflciency 

Chris Tong, Wesley Braudaway, Sunil Mohan, and Kerstin Voigt 
Department of Computer Science 

Rutgers University 
New Brunswick, NJ 08903 

Abstract 
KBSDE is a knowledge compiler that usee a 
classification-based approach to map solution con- 
straints in a taek specification onto particular 
search algorithm components that will be respon- 
sible for satisfying those constraints ‘-,y., local 
constraints are incorporated in generat: 14’ global 
constraints are incorporated in either .ba*ters or 
hillclimbing patchen). Associated with each type 
of search algorithm component is a subcompiler 
that specialisea in mapping constraints into com- 
ponents of that type. Each of these subcompil- 
em in turn una e classification-baaed approach, 
matching a constraint p d  to it against one of 
several schemes, .and applying a compilation tech- 
nique associated with that schema. 
While much progene h a  occurred in our research 
since we first laid out our classification-bad a p  
p r o d  [TonSl], we focus in this paper on our re- 
formulation research. Two important reformula. 
tion issuer that arise out of the choice of a schema- 
based approach are: 

Compilobility. Can e constraint that does not 
directly match any of a particular subcompiler’s 
schemaa be reformulated into one that doea? 

If the efficiency of the compiled 
search algorithm depends on the compiler’s per- 
formance, and the compiler’r perforxnance de- 
pends on the form in which the constraint waa 
expressed, can we find forma for constraints 
which compile better, or reformulak constraints 
whose forma c m  be recognized as ones that 
compile poorly? 

In this paper, we deecribe a set of techniques we 
are developing for partially addressing these is 

0 EfFciency. 

sua.  

Introduction 
Because we have described KBSDE more extensively 
elsewhere [TonSl], our introduction to the basic idem 
behind KBSDE will be relatively brief. 

Room lengths murt be at leaat 8invalu~i. 
R o o m  widths m w t  be at least rinValu.2. 
Rooma mart be imide the doorplan. 
Rooms m a t  be adjacent to the floorplan 
boundar j .  
R o o m  muat not overlap. (NONOV) 
The room murt completelj fill the i I00rp1~ 

(MINL) 
(MINW) 

(ADJ) 
(INS) 

(FILL) 
i space. 

Figure 1: Constraints on house floorplans 

Task specifications. KBSDE accepts task spec- 
ifications that can be expressed in the form: I Syntherte(i : I ,  o : 0)  I P(o)  I 

where i is the input defining a particular problem, 
o is a candidate solution, 0 (the type of the object o 
to be synthesized) definea the space of candidate solu- 
tions, and P(o) h a predicate on o that must be sat- 
isfied. P(o) is expreaeed aa a conjunction of simpler 
constraints. 

Many design t m h  can be specified in this r. .-.iier. 
- - r  example, the specification for a simple hous >or- 

inning task might look like: 

Syntheriae(< 1 : houaeLength, w : housewbdth, 
n : NbtRooma >, f p  : Floorplan) 
I AcceptableFloorplan( f p )  

where AcceptableFloorplan( f p )  is the conjunction 
of the constraints listed in Figure 1. 

Algorithm descriptions. KBSDE’s top-level clas- 
sification partitiom the conjoined constraints in P ( o )  
into (mutually exclusive) subeets Pi(.) of constraints, 
where each subat  in to be satisfied by a distinct al- 
gorithm component (either a constrained generator, a 
tester, or a hillclimbing patcher). Prototype heuristics 
for assigning constraints to algorithm components are 
discussed in [TonSl]. 

One example of a partitioning of the constraints in 
Figure 1 among a set of algorithm components is: 

154 



Synthesize( < 1 : H Length, w : H Width, 
n : N b ~ s  >, f p  : Floorplan) 

Generate(8 I MINL(fp) A MINW(fp) 

if Test(fp I NONOV(fp) A FILL(fp)) fails 

Return( fp). 

AINs(fp) A ADJ(fp)); 

then Patch( f p  1 NONOV(fp) A F I L L ( f p ) ) ;  

The intended semantics of this syntax is: generate an 
s; if the tested constraints fail, then try to patch; if 
patching fails, chronologically backtrack to the gener- 
ator. Later references to Tests in this paper are in- 
tended to have the same semantics with respect to test 
failure and backtracking to preceding generators. 

Algorithms themselves can be partitioned across wv- 
era1 levels of abstraction. For example, 

Syntherbe(< 1 : Htength, w : HWidth, 
n : NbrRoorns >, f p  : Floorplan) 

Generate(< 01 : area(Roorn), ..., 
an : area(-) >); 

Test(< (11, ..., an >I 1 z w = a1 + aj + ... + an); 

high level 

low level 

For i = 1 to n.do 
Generate(ri : I MINL(ri) 

A M I N W ( r i )  A INS(ri) 
AADJ(r,) A Area(pi) = ai); 

. m s ( f p )  +< r1, ..., rn >; 
if Test( fp  I NONOV(fp) A FILL(fp)) fails 

Return( fp). 
then Patch(fp I NONOV(fp) A FILL(fp)); 

Constraints are thus partitioned across levels M well M 
across the algorithm components within each level. In 
addition, inter-level constraints (such as Are+) = 
ai)  are dynamically posted to ensure that a solution 
generated at the next level down is a refinement of the 
solution at the current level. 

Reformulating constraints for 
incorporation into generators 

The RICK subcompiler (the subject of Wes Braud- 
away’s Ph.D. work [BraSlb, Bragla]) of KBSDE s p a  
cializes in incorporating local solution constraints c 
into generators of all instances s of a given type T. 
The result ia a constrained generator, whose computed 
range of vdues is guaranteed to include only those in- 
stances of T that satisfy c; this is typically accom- 
plished by either changing the lower or upper bounds 
of the range, or pruning out inconsistent values and 
caching the remainder. Note that T can be non- 
numerical, and hierarchical in structure (e.g., a rect- 
angular floorplan is composed of rectangular rooms; 

each room is defined in terms of 4 parameters: < 

Compilabilit y 
The structure mismatch problem. The generator 
structure of a an algorithm is its internal organization 
of generator components. Different generator struc- 
tures can be constructed for the same task. Some gen- 
erator structures do not allow the incorporation of all 
constraints. We refer to this as the structure mismatch 
problem. 

The structure mismatch problem is actually a family 
of problem, as illustrated in Figure 2, which indicates 
all the activities involved in RICK’S process of design- 
ing a constrained generator. Each such decision ((a) 
through (h)) can be ‘bollixed” by its own unique struc- 
ture mismatch problem. For example, decision (a) - 
partitioning requirement8 - takes a set of requirement8 
R(s) and decides which will be treated as local, type- 
defining constraints T(s), which will be considered as 
semi-local constraints C(s) on interfacing parts of s, 
and which will be considered global constraints P(s); 
which constraints can be treated M type-defining de- 
pend on the known datatypes. 

The RICK subcompiler aaoids the structure mis- 
match problem associated with decision (e) (the 
choice of low-level object structure), decision (g) (the 
choice of composition architecture), and decision (h) 
(the choice of control flow) by using a least commit- 
ment approach to top-dom refinement of the genera- 
tors that is constrained by the constraints to be incor- 
porated [BraSlb]. 

Thus for thesea decisions, RICK avoids the need for 
a reformulation-bd approach to the structure mi+ 
match problem. However, RICK doea require reformu- 
lation for a particular special case of decision e) which 
we now deocribe. 

Reformulation to eliminate terminological mis- 
match between constraint and generator. If a 
constraint c refers to an object obj that is semanti- 
cally a dynamically generated part of solution o (e.g., 
the poinb inside rectangle R) but that does not appear 
syntactically aa a part or parameter of o (according 
to the given type definition T), then c cannot be di- 
rectly incorporated into the generator of all instances 
of type T (since the hierarchical structure of the gen- 
erator procedure is directly lifted from the syntactic 
structure of T). Incorporation is enabled by using re- 
formulation techniques that reexpress c solely in terms 
of the defined partr and parameters of T. 

For example, constraint INS, ‘Room must be inside 
the floorplan”, might originally be expressed aa “If a 
point is inside a room, than that point is also inside 
the floorplan” : 
VR, P[[Room(R) A Point(P) A z ( ~ w ( R ) )  5 z ( P )  

I, y, 1 ,  w >). 

5 z(ne(R)) A ?/(3w(R)) I Y(P) I ?/(ne(R))I + 

[x(sw(fborplan)) 5 z ( P )  5 z(ne(fhrp1an))A 

1 5 5  



Knowledge Level 
Decisiona 

I 
(a) Partitioning Requirement. 

0 (k) Terminology 

1 .  
(d) Generator Order 

(e) Low-level Structure 

0 (g) Composition 
Architecture 

Function Level 
0 (h) Control Flow Decisions 

Component (I 
Test Artifact 

Components Candidate 

Figure 2: Design decisioxu defining a family of atructure mismatch problem 

I 

156 



y ( s w ( f l m p l ( 4 )  I Y(P)  5 y(ne(fl-plan))Jl 
The problem is that T, the part decomposition for 

objects of type Floorplan, does not include points P 
in the interior of a room. The RICK system uses the 
transitivity of the '5" relation to hypothesize a plau- 
sible reformulation of the above constraint that does 
not refer to points P, and instead, simply constrains 
the extreme points of room R: 
VR[Room(R) + 

[z(sw(floorplan)) 5 z ( s w ( R ) )  I z(ne(floorplon))A 

z(sw(fIoorplan)) 5 z (ne(R))  5 c(ne(flmp1an))A 

RICK then uses a standard theorem-proving technique 
to verih that this hypothesized reformulation is a nec- 
eaaary condition for the original constraint. 

Reformulation by eliciting simplifying assump- 
tions. Because RICK usee the simplex method to 
check the consistency of a set of constraints (a neces 
sary step along the way to constructing a constrained 
generator satisfying those constraints), all such con- 
straints must ultimately be expressible in a linear alge- 
braic form in order for compilation to proceed. Some- 
times, however, constraints that could be reformulated 
ae linear Constraints depend for their reformulation 
upon knowledge not available in RICK's knowledge 
base. 
For example, in our house floorplanning example, 

floorplane and room are defined to be rectangular. 
Rectangles in general need not be aligned horizontally 
or vertically in the Cartesian plane; thus, the type def- 
inition for a general rectangle will have aeeociated the 
nonlinear constraint: 

y ( s4 f l -p lon) )  I y(sw(R))  I y(ne(fl-pJan))A 

y ( a w ( f l m p l a 4 )  I y(ne(R)) I y(ne(flootplan))ll 

[ z (nw(R))  - z(sw(R))I * [z(se(R))  - 4 4 R ) ) J  = 
[y (nw(R))  - Y ( M R ) ) I  * [y (=(R))  - Y ( M R ) ) I  
However, were RICK to know that: 
z(nw(R))  = c ( sw(R) )  
i.e., we can consider the rectangle to be vertically 
aligned with the y axis, then because (non-degenerate) 
rectangles also have the associated constraint: 

the constraint could be reduced to the linear con- 
straint: 

Le., "the rectangle is horizontally aligned with the x 
axis." 

If at any point, compilation eomea to a halt b e  
cause the only constraints left to compile are nonlin- 
ear, RICK consults the user, by presenting a list of 
plausible simplifying assumptiom. These simplifying 
assumptions are generated by heuristics that examine 
a nonlinear constraint and consider what would have 
to be true in order for it to be reducible to a linear con- 
straint. Thus if (z - y )  appears in a product, 'e = y" 

Y ( 4 R ) )  < y ( n N R ) )  

y(se(R)) = Y(SW(R)) 

would simplify the constraint if it were true; if z y  ap. 
pears in a sum, c = l / y  would simplify the constraint. 

The generation (and selection/verification by the 
user) of such simplifying assumptions is intended to 
mimic the form of mathematical reasoning, "Without 
loss of generality, let us aseume ...". The user is in- 
volved in this process because, in general, actual verifi- 
cation of such simplifying assumptions requires knowl- 
edge that is not available in the system's knowledge 
base. 

Emciency improvement 
RICK's task is to construct, for a given constraint c(o), 
where o is of type T, a constrained generator of objects 
of type T that are guaranteed to satisfy c. Thus, no 
matter how it chooeee to represent solutions or incor- 
porate the constraint, if RICK fully incorporates c into 
the generator, the set of solutions generated will always 
be the same. Since RICK does not reason about 'low- 
level" imuea such as choice of data structure for solu- 
tions, the primary iaaue regarding efficiency is whether 
the constructed constrained generator - which sequen- 
tially produces all the members of the set {o 1 c(o)} - 
is producing duplicate candidate solutions in that se- 
quence. 
One reformulation technique used by RICK to help 

reduce the construction of redundant solutions is based 
on knowing that if RICK is p d  a constraint of the 
form: 

it will "operationalize" this by constructing generators 
for object8 x and y, generate one object first (say, x), 
and then construct y to be an exact copy of x. RICK 
avoids this undesirable behavior by looking for such 
constraints, forming their logical contrapositive (ex- 
cept for the type-defining terms), and then reexprese- 
ing the constraint in a canonical form. 
For example, the NONOV constraint, 'Rooma must 

not overlap", might originally be expressed 88: 

VR1, R2, P[room(Rl) A r m ( R 2 )  A point(P) 
AstrictlyInside(P, R l )h  
strictlyInside(P, R2) 4 R1 = R2] 

vz, y[P 4 2 = 91 

The contrapositive is: 
VR1, R2, P(room(R1) A r m ( R 2 )  A R1 A point(P) 

AR1# R2 -+ - strictlyInside( P, R1)V - strictlyInside(P, R2)] 
which is then put in canonical form: 
VR1, R2, P[room( R1) A room( R2) A R1 A point( P )  

Ast+ictlyInsi&(P, R1) 
ARl # R2 +- strictlyZnsi&(P, R2)] 

Reformulating constraints for more 
efficient function evaluation 

The MENDER subcompiler (the subject of Kerstin 
Voigt's Ph.D. work [VTSS]) of KBSDE specializes 

157 



in incorporating global constraints c into hillclimb. 
ing patchere; these patchers take a candidate solu- 
tion s that faib test c, and iteratively modifies 9. one 
parameter value at  a time, in such a way that im- 
provement occurs with respect to an evaluation func- 
tion f. f is constructed by MENDER so that there 
is some value k such that when hillclimbing reaches 
f(s) >_ k, c(s) is simultaneously satisfied. For exam- 
ple, the FILL constraint, “The room must completely 
fill the floorplan space” is completely satisfied when 
f(s) = HLength * HWidth, where f(s) is the number 
of 1x1 ‘unit tiles” in the floorplan that are covered by 
room. 

MENDER handles those global constraints that can 
be viewed as resoume assignment problems (RAPS) 
involving assigning a fixed set of resource units to a 
dynamically generated set of consumer8 in a specified 
way. For example, the FILL constraint can be viewed 
ad a RAP wherein the the resources are unit tilea in 
the rectangular floorplan, the consumers are rectangu- 
lar room and the required assignment is that each re- 
source unit be assigned (at least) one consumer. (Note 
that other constraints such aa NONOV and INS en- 
sure that each resource unit is assigned ezactly one 
comumer.) 

Compilation ia baaed on a taxonomy of resource 
wignment problem schemtw, where what is varying 
acr- the achemu i. the nature of the assignment 
(onateone, onto, etc.) h c i a t e d  with each d e m a  
is a method for constructing an evaluation function a p  
propriate for that kind of RAP. Thua the schema for 
an “onto” assignment (such as FILL) haa an associated 
evaluation function which counts the total number of 
resource units “covered” by consumers in a particular 
state. 

Efficiency improvement 
The RAP schemae can be organized into a specializcr. 
tion lattice. More specialized achemas have more con- 
straints on the mignment; becauee, therefore, more in 
known about such RAPS, they ale0 often have more ef- 
ficiently evaluatable functions. For example, the moet 
specialized RAP, where the relation between resource 
units and consumers is “onat+one” and “onto” (e.g., 
as between unit tiles in the floorplan and unit tiles in 
the room rectangles), can take advantage of the fact 
that all the consumen mu& have tuwociated resource 
units assigned to them. (The nature of the overall 
search algorithm architecture in which the hillclimbing 
patcher is embedded guaranteea that the patcher wil l  
be p d  a candidate solution that satbfk the “on& 
to-one” constraint, though not neceassrily the ‘onto” 
constraint.) It further relies on the common occurrence 
of a strictly hierarchical structure in the consumer or- 
ganization (e.g., the consumer unit tiles are grouped 
into rectangular room). On the basis of these facts, 
the associated evaluation function can count the t 6  
tal number of “covered” resource units by counting 

the total number of assigned consumer units, which 
is the same aa summing the s u e s  of the (mutually 
exclusive) consumer group into which the consumer 
units are partitioned. Thus, if the FILL constraint 
were viewed as an instance of this RAP schema, the 
associated evaluation function would add the amas of 
the placed room (which are architecturally gauranteed 
to be inside the house and non-overlapping). 

Such specialized schema match a conjunction of 
constraints (e.g., the most specialized RAP matches 
FILL A INS A NONOV). Initially, a global constraint is 
completely successfully matched against one of the less 
specialized RAP schemas. Each of the specializations 
of the RAP &ems constitutes 8 potential reformu- 
lation opportunity. Such an opportunity is processed 
in a goal-directed fashion, in the sense that domain- 
specific instances of the additional constraints which 
must also be true to match the more specialized RAP 
schema are then sought mong  the conjunct8 of P(o) 
(or -raven to be antecedents for P(o)). 

Reformulating constraints for designing 
abstraction levels 

The HiT subcompiler (the subjeet of Sunil Mohan’e 
Ph.D. work [MohSl]) of KBSDE specializer, in divid- 
ing the s w c h  algorithm architecture into two or more 
leveb (if two, they are called the “base level” and the 
“abstract level”). Each of these leveb has an asso. 
ciated reaKh algorithm, configured from (comtrained) 
generatom, testem, and hillclimbing patchera (see, e.g., 
the earlier twdevel example). 

A (generally global) constraint P(s) can serve as the 
baa& for constructing an abstraction level in the follow- 
ing em: An abtraction function mapping solutions 
s into abstractions f(s) is constructed (e.g., f might ab  
stract a ”room” into a “room area”). An abstract gen- 
erator Generate( i input,a:range(f)) can ther. be con- 
struct+‘ which a-r:*rates dl elements a in ‘.le range 
of f(8) - nbstracted into test P’ LI, which 
is appi. able to wscract candidate solutions. Thus 
one o56bble searcn d orithm for the abstract level is: 

Generate(i : anput, o : tonge(f));  z Teat(o I P’(o)) 

HiT currently ia organized around two echemas r e p  
resenting constraint types whose very form maker, it 
easy to construct an abatraction function: 

.‘(a) can 

1. 

2. 

A n c t i o n a l  constmink: P(F(8)). B d  on such a 
constraint, the abstract level generates { z  1 z = 
F(u)}  and the base level is then responsible for en- 
suring that P(refinement(2)) holds. 
Disjunctive con- 
stmink: Vs, t[sdution(s) A prtZ”ype(t, 3) -I Vp : 
T[port(p, u )  -* P l ( p )  V P2(p) V ... V Pn(p).]] The ab- 
stract level generator selects one of these disjuncts 
to be true by fiat (Le., it poets the disjunct as a con- 
straint). The base level must then construct an s 



that satisfies that disjunct. 

C ompilab ility 
Reformulating a constraint into disjunctive 
form. Several general rules are used to carry out this 
reformulation (some of which are similar to those used 
to transform a predicate logic assertion into conjunc- 
tive normal form). These include: “Move negations in- 
ward”, “Reformulate the expression as a disjunction”, 
and ‘Remove variables that refer to non-solution ob- 
jects.= 

Using these transformations, a constraint such ad 
NONOV: 

For all pairs of room R1 and R2, it is not that 
the caae there exists a point p that is both inside 
room R1 and inside some other room R2. 

or: 
VR1, RZ[Room(Rl) A Room(R2) A R 1 #  R2 + 

is eventually re-expressed as: 
VR1, R2[Room(R1) A Room(R2) A R1# R2 -+ 

[- L(R1, R2)V - B(R1, R2) 
V - R(R1, R2)V - A(R1, RZ)]] 

- (3p[InsZde(p, R1) A Inside(p, R2)]) 

where the predicates are defined aa follows: 
L(R1,RS): The x coordinate of the right side of R1 
is lees than or equal to the x coordinate of the left 
side of R2. 
B(Rl,R2): The y coordinate of the top side of R1 is 
l m  than or equal to the y coordinate of the bottom 
side of R2. 
R(Rl,R2): The x coordinate of the left side of R1 
is greater than or equal to the x coordinate of the 
right side of R2. 
A(Rl,R2): The y coordinate of the bottom side of 
R1 is greater than the y coordinate of the top side 
of R2. 
At this point, the constraint matches the ‘disiunc- 

tive constraint schema” and HIT can now proceed to 
construct an abstract level where, for every pair of 
room < Rl ,  R2 >, one of the four above relationship 
is generated as a constraint to be satisfied. 

Emciency improvement 
Deriving composition laws for the disjunctive 
case. As is readily noticed, picking topological rela- 
tione at random between pairs of room is not likely 
to very rapidly converge on an abstract solution that 
is actually concretely realizable. 

Fortunately, because the predicates of disjuncts can 
be viewed as defining relations, we can sometimes ex- 
ploit known or provable properties of relations such 
as transitivity, reflexivity, or symmetry. Such proper- 
ties can be viewed more constructively aa composition 
rules. Thus for the L(R1,RZ) relation, the following 
two composition rules can be shown to hold: 

hns i t iva ty .  
L(R1, R3). 
No reflen’vaty. L(R1, Rl). 
These composition laws can then be made opera- 

tional in several ways, including: incorporating them 
into the abstract generators using RICK; using them 
to dynamically prune the ranges of the abstract gener- 
ators; using them as abstract tests (supplementing the 
original test). 

If L(R1, R2) and L(R2, R3), then 

Discussion and conclusions 
summary 
In this paper, we have briefly described a number of re- 
formulation techniquen for use during knowledge com- 
pilation, either to make constraints compilable in the 
first place, or to put them in a form that compiles into 
a more efficient search algorithm. The reformulation 
techniquen described here are schema-specific; match- 
ing of a constraint to a given subcompiler’s schema can 
be aided by a reformulation technique, or a constraint 
that (already) matches a particular schema can be put 
in a form (possibly one that matches another schema) 
that will allow it to be more efficiently satisfied. 

Implementation a tatur 
At thio point, the reformulation techniques discuseed 
for use in the RICK subcompiler have been impla 
mented; the onea associated with the MENDER and 
HIT subcompilers are the subject of ongoing research. 

Related work 
Antecedent derivation. A schema-specific approach 
to schema-matching is usefully contraated with a 
general-purpose approach, such aa Smith’s antecedent 
derivation method [Smi82]. One difference (we believe) 
is that the ‘antecedent derivation” process for a given 
schema can be restricted to using a specified (small) 
set of inference rules associated with that schema. A 
second difference is that in some eaeee, our schema- 
specific reformulation technique is a “normalization” 
proem that worb in the forward direction (e.g., to 
put a constraint in a disjunctive form). 

DRAT. Like KBSDE, another schema-oriented ap- 
proach that is more specialized than Smith’s an- 
tecedent derivation method is Van Baden’s DRAT sys- 
tem [BD88]. KBSDE’e target is an efficient generate- 
test-patch architecture: in contraat, DRAT’S target 
is an efficient (object-oriented) forward-chaining the- 
orem prover. Both system take e classification- 
baeed approach to assigning specified constraints to 
schemas. However, KBSDE’s schemaa correspond to 
generic search algorithm components such as gen- 
erator or patcher types, whereas DRAT’S schema 
correspond to (efficient implementations for) generic 
forward-chaining rules. 

159 



In KBSDE, ‘incorporating a constraint” in a con- 
strained generator me= that the constraint need no 
longer be represented explicitly in the problem solver: 
the generator is guaranteed to only produce accepr- 
able solutions. Similarly, in DRAT, ‘capturing a con- 
straint” in a rule implementation ale0 means that that 
constraint need not be explicitly mentioned in the 
problem solver. KBSDE’s ideal is to incorporate all 
constraints in a single (hierarchically organized) con- 
strained generator, which produces completely correct 
solutions in polynomial time. Since thia ideal ia sel- 
dom achieved (it would require finding a solution r e p  
resentation in which all constraints are localizable to 
solution parts), KBSDE haa a set of fallback strata 
gies: incorporate the ‘leftover” global constraints in a 
patcher, in new abstraction levels, or (least preferred) 
in a tester. 

DRAT’S analogue to our reformulation techniques 
for enabling compilability is called concept introduc- 
tion; by considering alternative formulacions for one 
of the taak’s concepts, DRAT can mmetimea find a 
representation that allowe more constraints to be c a p  
turable. A process called operationalization then tries 
to capture the ‘leftover”, uncaptured constraints by 
writing procedures and using these to further special- 
ize the already selected repreaentatiom. 

Code optimkation..Our reformulatiom aesociated 
with efficiency improvement are similar in spirit to 
intermediate code optimization in standard compiler 
technology, in the wnee that such optimirationa are 
done: (a) a t  a level of abstraction higher than the tar- 
get level (in our case, reformulating constraints into 
other constrainta); and (b) baaed on a thorough knowl- 
edge of how the compiler to the target level works. 

Research directiona 
The wt of reformulation techniquea presented here is 
under development. Some of the a r e a  still in need 
of further development are: techniques for reformu- 
lating constraints to match RAP de- ;  techniques 
for matching the functional constraint achema; tech- 
niques for improving the efficient proceasing of funo 
tional constraints; and an elaboration of how to best 
exploit derived composition laws for newly constructed 
abstraction levels. 

Admo.*ledgcmentr 
I am grateful to Mark Shirley and Rob Holte for 

reviewing an earlier draft of this paper. I am esw 
cially grateful to my Spiritual Teacher, Sri De Avab- 
hasa. The research reported here waa supported in 
part by the National Science Foundation (NSF) un- 
der Grant Numbem IRI-9017121 and DMG8610507, 
in part by the Defense Advanced Rescarch Projecta 
Agency (DARPA) under DARPA-funded NASA Grant 
NAG2-645, in part by the DARPA under Contract 
Number N00014-85-K-0116, and in part by the Center 
for Computer Aids to Industrial Productivity (CAIP), 

Rutgers University, with funds provided by the New 
Jersey Commission on Science and Technology and by 
CAIP’e industrial members. The opinions expressed 
in this paper are thoee of the authors and do not re- 
flect any policies, either expressed or implied, of any 
granting agency. 

References 
J. Van Baalen and R. Davis. Overview of an approach 
to representation design. In Pmceedangr of the AAAI, 
pages 392-397, St. Paul, MN, August 1988. 
W. Braudaway. Automated synthesis of constrained 
generators. In M. Lowry and R. McCartney, editore, 
Automating Software Deragn. AAAI Press, 1991. 
W. Braudaway. Knowledge compilation for incorpo- 
rating constrainb. PhD thesis, Rutgers University, 
New Brunswick, NJ, December 1991. 
S. Mohan. Constructing Hierarchical Solvers for 
Functional Constraint Satisfaction Problem. In 
Proceedings of the AAAI Spring Symposium, New 
Brunswick, NJ, Spring 1991. Also available aa 
AI/Design Project Working Paper #172. 
D. R. Smith. Derived preconditions and their use in 
program synthesis. In D. W. Loveland, editor, Pro- 
ceedingr of the Skth Conference on Automated De- 
duction, pages 172-193. Springer-Verlag, New York, 
1982. Lecturea Notes in Computer Science 138. 
C. Tong. A dividaand-conquu approach to knowl- 
edge compilation. In M. Lomy and R. McCartney, 
editors, Automating Softwarn Derigm AAAI Press, 
1991. Also available aa Rutgem AI/Design Project 
Working Paper #174. 
K. Voigt and C. Tong. Automating the construction 
of patchers that =tidy global constraints. In Proeeed- 
ingr of the Eleventh International Joint Conference 
on Artificial Intelligence, pages 1446-1452, Detroit, 
MI, August 1989. 

160 



Van Baalen  

The Role of Reformulation in the Automatic Design of 
Satisfiability Procedures 

Jeffrey Van Baalen 
Computer Science Department 

University of Wyoming 
jvbQmoran.uwyo.edu 

?/&- 6 3  

Abstract 
Recently there has been increasing interest in the prob- 
lem of knowledge compilation [Selman&KautzSl]. This 
is the problem of identifying tractable techniques for 
determining the consequences of a knowledge base. We 
have developed and implemented a technique, called 
DRAT, that given a theory, i.e., a collection of first- 
order clauses, can often produce a type of decision prG 
cedure for that theory that can be used in the place of 
a general-purpose first-order theorem prover for deter- 
mining the many of the consequences of that theory. 
Hence, DRAT does a type of knowledge compilation. 
Central to the DRAT technique is a type of reformula- 
tion in which a problem's clauses are restated in terms 
of different nonlogical symbols. The reformulation is 

.isomorphic in the sense that it does not change the 
semantics of a problem. 

INTRODUCTION 
Recently there has been increasing interest in the prob- 
lem of knowledge compilation [Selman&Kautz91]. This 
is the problem of identifying tractable techniques for 
determining the consequences of a knowledge base. 
Most interesting knowledge bases are written in high- 
ly expressive languages for which the general problem 
of complete inference is intractable (eg., at least NP- 
hard, usually undecidable). Even though the general 
inference problem in such a language is intractable, 
given a particular knowledge ,base, it is often possi- 
ble to identify a tractable i,nference procedure that is 
complete for the inferences required in that knowledge 
base. 

We have developed and implemented a technique, 
called DRAT,  that given a theory, i.e., a collection of 
first-order clauses, can often produce a type of deci- 
sion procedure for that theory. This type of procedure 
is called a literal satisfiabtlaty procedure. Such a satisfi- 
ability procedure for a theory T decides whether or not 
a conjunction of ground literals is satisfiable in T. A 
literal satisfiability procedure for a theory can be used 
in the place of a general-purpose first-order theorem 
prover for determining the many of the consequences 
of that theory. Hence, DRAT does a type of knowledge 

compilation. 
Obviously, we are better off using a satisfiability pro- 

cedure for determining the consequences of a theory 
than we are using a general-purpose theorem prover be- 
cause the satisfiability procedure is guaranteed to halt. 
However, under what circumstances should we consider 
such a procedure tractable? A straightforward way to 
define tractability is polynomial-time worst-case com- 
plexity and for some theories DRAT can produce a sat- 
isfiability procedure that has this property. For many 
other theories, the satisfiability procedures produced 
are exponential in the worst case. Note that DRAT 
can determine whether a satisfiability procedure it pro- 
duces has polynomial or exponential worst-case behav- 
ior. In either case, the procedures are usually much 
more efficient than a general theorem prover because 
the complexity of the theorem prover proving that a 
fact F follows from a theory T is a function of the 
sum of the size of F U T, while the complexity of the 
satisfiability procedure is a function of the size of F. 

Even when DRAT cannot produce a literal satisfia- 
bility procedure for an entire theory it is often an im- 
provement to use a procedure for a subset of an input 
theory because such a procedure can be interfaced with 
a general-purpose theorem prover in such a way that 
the procedure and the theorem prover work together 
to determine the consequences of the theory. 

In practice, 90 long as a procedure can be found for 
a significant subset of the theory, the resulting infer- 
ence systems are much more efficient than the theorem 
prover alone because many of the inferences that the 
theorem prover would have to do are done more effi- 
ciently by the satisfiability procedure. 

Let 9 be the set of axioms of a problem and let S 
be the satisfiability procedure that DRAT designs for 
Q', some subset of Q.  The theorem prover restricts its 
manipulation of the statements in W, using S instead 
whenever possible. This paper presents a formalization 
Of DRAT and proves that it is complete, i.e., that for any 
first-order statement 4, if 9 /= 4, S combined with the 
theorem prover will prove 4. We show that DRAT'S re- 
formulation greatly increases its effectiveness and that 
a solution to a reformulated. version of a problem is 

161 



guaranteed to be a solution to the original problem. 
We present only a brief description of the DRAT a l p  

rithm here. A detailed description of an implementa- 
tion can be found in [VanBaalen891 or [VanBaalengfl]. 

DRAT was inspired by human problem solving per- 
formance on analytical tasks of the type found on grad- 
uate level standardized admissions tests. An example 
problem is given in Figure 1. 

Given: M, N,  0, P, Q, R, and S are all members of the 
same family. N is married to P. S is a grandchild of Q. 
0 is a niece of M. The mother of S is the only sister 
of M. R is Q's only child. M has no brothers. N is a 
grandfather of 0. 
Query: Who are the siblings of S? 

Figure 1: The FAMILIES Analytical Reasoning Prob- 
lem 

We analyzed human problem-solving behavior on a 
numter of these problems and found the prevalent use 
of diagrams to assist in problem solving. Figure 2 il- 
lustrates the typical diagrams people use to solve the 
problem in Figure 1. 

i ,i =..* 
"R is the only child of Q" "S is a grandchild of Q" 
(Divided rectangles represent couples; circlca represent sets 
of children of the same couple: full arclea are closed sets, 
broken circles are sets all of whose members may not be 
known; the directed arc represents the 'children-of" func- 
tion between couples and their rets of childrtn.) 

Figure 2: Two statements in a representation common- 
ly used by people. 

These diagrams were found to contain a common 
set of structures (across different people and differen- 
t problems). The arcs in Figure 2 are an example of 
such a structure. They represent the 1-1 function b a  
tween a married couple and their set of children. Each 
common structure was also found to have a standard 
set of procedures for manipulating it. For example, 
one procedure associated with the arcs in Figure 2 en- 
sures that they behave like a 1-1 function. It reads 
roughly as, "If two objects are equal and they appear 
at the same end of two separate 1-1 function arcs with 
the same function symbol, the arcs and the objects at 
their other end can be composed." This procedure is a- 
mong those used to compose the structures in Figure 2 
to yield the diagram in Figure 3. 

People use these diagrams to. test the satisfiability 
of a particular collection of facts by creating the struc- 

: s: ... 
Figure 3: Composition of the structures in Figure 3. 

tures representing each fact and then composing them. 
The conjunction is satisfiable just in case no contradic- 
tion is signalled in the composition process. 

D R A T  has a library of procedures called schemes. 
These schemes model people's diagrammatic struc- 
tures and their manipulations. Schemes were found 
to have a number of important properties which are 
described in this paper. Perhaps the most irr.-xtant 
of - - e e  properties is that each scheme turns :o be 
a 2 -3ability procedure. Another important 3erty 
of 3 :ernes is that they can be used as build1 lock- 
s to .onstruct "larger" satisfiability procedurk DRAT 
uses this property to construct satisfiability prccedures 
for input problems. 

The implementation of DRAT includes the schemes 
found in analyzing the diagrams that people used on 
thirty analytical tasks. It has been tested on twelve 
of these problems stated in a sorted firstorder logic. 
The problems vary in size from thirty to sixty sorted 
first-order statements. The performance of the theo- 
rem prover/satisfiability procedure combinations that 
DRAT produces for these problems was at least two or- 
ders of magnitude better than the performance of the 
theorem prover alone. For example, our general thew 
rem prover took 988,442 resolutions- three hours and 
five minutes-to solve the problem shown in Figure 1. 
The satisfiability procedure that D R A T  produced was 
able to solve the problem entirely without the theorem 
prover and did so in less than three seconds. 

PRELIMINARIES 
Each scheme is a tractable literal satisjiabilify procedun 
for a theoq .  

Definition 1 A theory is a set of statements in first- 
order predicate calculus with equality. 
Definition 2 A literal satiafiabiiity proccdun for a 
theory T is a procedure that decides for any conjunc- 
tion of ground literals C whether or not CUT is satis- 
fiable. 
Each scheme is tractable in the sense that, given any C 
containing n literals, the scheme for a theory T decides 
the satisfiability of C u T in time polynomial in n. 

Given a particular E, in addit:f-n to determining lit- 
eral satisfiabriity in some theor.. - pach scheme corn:- 
putes {u = u I u,u € C A  C = u = 7 > wher- 
C is the set of constant symbo:- Lppearing J T .  E. A, 
detailed in section , these equalita are communicated 
between schemes in a way that allows the combination 

162 



of schemes to determine satisfiability for the union of 
their theories. 

One important result of this research is the particu- 
lar library of schemes we have developed from the ob- 
servation of human problem solving of analytical tasks. 
However, in the formal characterization that follows, 
we abstract away from the detail of the current scheme 
library, identifying the properties of schemes required 
for the completeness of DRAT. 

This paper first takes a simplified view of what DRAT 
will accept as an input problem and also assumes that 
DRAT is only successful if it can produce a satisfiability 
procedure for an entire problem. In this setting, we 
prove that a combination of schemes is a satisfiability 
procedure for the union of the theories of the individual 
schemes. In section , the above restrictions are relaxed 
and it is shown how, in the more general setting, the 
procedures produced by DRAT are interfaced with a 
theorem prover. 

DRAT requires that the formulas of schemes and the 
formulas of an input problem be converted to clauses, 
i.e., disjunctions of first-order literals. The remainder 
of the paper asumes that this has been done. However, 
the presentation will often use more intuitive forms 
for statements, when the conversion to clause form is 
straightforward. 

The restricted definition of a problem taken first is: 

Definition 3 A problem is a triple < C,Tc,0 >, 
where C and @ are sets of ground literals and TC is a set 
of clauses each of which contains at least one variable. 
Such a triple is interpreted as a question about whether 
or not for all the ground literals 4 E @, C U Tc i= 4. 
Here is an example problem: 

grandfather(0, N ) ,  married(N, P) 
. I = {  grandchild(S, Q), niece(0, M ) ,  

M # N , N  # 0, ... 
rnother(S, z) ($ sister(M,z), 
(sister( M ,  z) A sister(M, y)) 3 z = y, 

= child(Q, I) I = R, { -brother(M, z), . . . 

1 
1 

= ( s i b l i n g ( 0 ,  S), child(N,  M ) }  
In addition to those axioms shown, C1 also contain- 

s disequalities between all of the individual constants 
mentioned. Tc, also contains definitions of concepts 
such a grandchild and formulas defining general prop- 
erties of the family relation domain such as symmetry 
of married. 

Given a problem < C, Tc, 0 >, DRAT’S objective is 
to design a literal satisfiability procedure for Tc. This 
procedure is used to solve the problem for the partic- 
ular C and 0. To determine whether for some 4 E 0, 
C U TC + 4, the satisfiability procedure for Tc is used 
to decide whether or not C U TC U 74 is unsatisfiable. 
For example, DRAT tries to design a satisfiability pro- 
cedure for Tc,. If successful, the procedure is used 
to decide whether “0” is a sibling of “S” and “M is 
a child of “N” follow from CI u Tcl by determining 

the satisfiability of C1 U Tc, U - . s ibhg(O,  S )  and of 
u rc, u -.child(N, M ) .  

Obviously, we are better off using a satisfiability pro- 
cedure for Tc to solve a problem < C,Tc, @ > than 
using a general theorem prover because the satisfiabil- 
ity procedure is guaranteed to halt. Perhaps less obvi- 
ous is the fact that these procedures are usually much 
more efficient than a general theorem prover. The intu- 
ition behind this is that the complexity of the theorem 
prover solving the problem is a function of the size of 
the entire problem, while the complexity of the satisfi- 
ability procedure is a function of the size of C U @. As 
pointed out in section , this intuition is substantiated 
by the performance of the procedures that D R A T  has 
designed. 

THE DRAT TECHNIQUE 
We will call the relation, function and individual con- 
stant symbols in a theory the nonlogtcalsymbolsof that 
theory. The nonlogical symbols of each scheme’s the- 
ory are treated as parameters to be instantiated with 
the nonlogical symbols of Tc. For example, the scheme 
TSymmetric whose theory is {R(z,y) + R(y,z)} is pa- 
rameterized by R. 

DRAT tries to find a set of scheme instances that can 
be combined to give a literal satisfiability procedure 
for Tc. Consider a set of scheme instances. Call the 
union of the theories of each scheme instance TI.  DRAT 
has succeeded in finding a satisfiability procedure when 
it finds a TI that is logically equivalent to Tc. The 
following is an abstract description of this process: 
instances + 0 
TI - 0 
T& + Tc 
UNTIL empty(Tc) DO 

instance c c hoose-inst ance( T& ) 
IF null(instance) THEN EXIT-WITH failure 
instances + union(instance, instances) 
TI +- union(theory(inslance), T I )  
FOR EACH 4 E T& 

WHEN TI + 4  DO T& + T& - 4  
END FOR 

END UNTIL 
A set of scheme instances is built up incrementally 

and, simultaneously, the set of clauses in T& is paired 
down. Each time chooaa-instance is invoked, it in- 
spects T& and chooses a scheme instance whose theory 
is entailed by T&. After the theory of instance is added 
to TI,  DRAT removes clauses from T& that are entailed 

DRAT uses the following procedure for computing 
satisfiability in TI to determine the 4 E T& that follow 
from TI. For each clause 4, it creates 4‘ by substitut- 
ing a new individual constant for each unique variable 
in 4. If the satisfiability procedure for TI reports that 
-4’ U TI is unsatisfiable, TI + 4. 

If the algorithm is exited with T,$ empty, DRAT has 
succeeded in finding a TI that is equivalent to Tc. To 

by TI. 

163 



see this, note that T& U TI E Tc is an invariant of the 
IDTD. Adding theory(instance) to TI does not violate 
t: condition because T,$ theory(instance). Re- 
n ving from T& clauses d such that TI q5 also does 
nbt  violate the condition. 

If the algorithm is exited because choose-instance 
returns nil, it has  failed to find a TI that is equivalent 
to Tc. 

Yote that this algorithm is nondeterministic be- 
cause, in general, on a call to choose-instance, there 
are several instances from which to choose. The DRAT 
implementation searches for an appropriate collection 
of scheme instances. This search is reduced consider- 
ably by the fact that scheme instances in Tr may not 
share nonlogical symbols. As discussed in section , this 
restriction is required to allow schemes to be combined 
by the method described below. More detail on how 
the DRAT implementation r .  introls this search can be 
found in [VanBaalenOS]. 

A PROCEDURE FOR COMBINING 
SCHEMES 
Since TI is the theory of a set of scheme instances, so 
long as these instances do not share nonlogical symbol- 
s, DRAT has a satisfiability procedure for TI. This pro- 
cedure is the combination of schemes used to create TI. 
DRAT’S combination technique is the same technique as 
reported by Nelson& Oppen in [Nelson&Oppen79] and 
a more detailed description than what follows can be 
found there. 

Let L ( T )  be the set of nonlogical symbols appearing 
in the clauses of T. We will often refer to L(T) as the 
language of T .  Consider two scheme instances, TI and 
Tz, where C(T1)  is disjoint from L(Tz), and consider a 
conjunction of literals C in L(T1 U 7‘2). The procedure 
for deciding the satisfiability of C U TI U Tz begins by 
splitting C into two conjunctions of literals: C1,  with 
literals in f ( 2 ‘ 1 )  and Cz, with literals in L(T2)  such that 
the conjunction of literals in C1 and Cz is satisfiable 
just in case C is. 

When a literal in C contains nonlogical symbols from 
L(T1 u Tz), remove each subterm whose function sym- 
bol is not in the language of the head symbol of the 
term. A subterm is removed by substituting a new 
constant symbol for that subterm in the literal and 
conjoining an equality between the term and the new 
symbol with the proper Cia For example, suppose R 
is in L ( T 1 ) ,  f is in L(T2) and C contains the literal 
R(f(a)). The embedded term is in the wrong language, 
so it is removed. This is done by substituting a new 
constant, say 6 ,  for f(a) in R ( f ( a ) )  to obtain R(b)  and 
conjoining b = f(a) with Cz. 

For each literal in E, this technique is applied repeat- 
edly to the right most function symbol in the wrong 
language until the literal no longer contains symbols 
in the wrong language. Then the literal is conjoined 
with the appropriate Ci. For instance, R(b) from the 

example above contain5 no symbols in the wrong lan- 
guage so it is conjoinec! with C 1 .  

Next the scheme for Ti is used to determine t h p  satis- 
fiability of C1 UT,. Ftecall that in so doing, this scheme 
also computes the set of equalities between constants 
in C1 that follow from C 1  U TI. Call this set El. The 
scheme for T2 is used to determine the satisfiability of 
C z U T z U E l .  If it is satisfiable, E l ,  the set of equalities 
that follow from CZ U T2 U E l ,  is propagated back to 
T I ,  Le., TI is used to compute C1 UT1 U E2. 

This propagation of equalities continues until one of 
the schemes reports “unsatisfiable” or until no new e- 
qualities are computed. Note that since there are at 
most n - 1 nonredundant equalities between n con- 
stant symbols, this process will terminate. Unless the 
scheme for T1 or Tz reports “unsatisfiable,” the proce- 
dure for the combination returns “satisfiable.” 

A complication to this equality propagation pro- 
cedure is that given a set of ground literals, many 
tractable schemes imply disjunctions of equalities be- 
tween constants without implying any of the dis- 
juncts alone, a property called nonconuezity in 
[Nelson&Oppen79]. An example of a convex scheme 
is one that determines satisfiability for the theory of 
equality with uninterpreted function symbols. An ex- 
ample of a nonconvex scheme is one for the theory 
of sets. To see this, note that {a, b} = { c ,  d }  implies 
a = c v a  = d ,  but does not imply either equality alone. 

A scheme associated with a nonconvex theory must 
compute disjunctions of equalities between constants 
that follow from a given conjunction of ground liter- 
als. The equality propagation procedure is extend- 
ed to handle such schemes by case splitting when a 
nonconvex scheme produces a disjunction. When one 
of the component schemes produces the disjunction 
c1 = dl v . . . v c, = d , ,  the combined satisfiabili- 
ty procedure is applied recursively t.o the conjunct :,.m 

these is satisfiable, “satisfiable” is ::.turned, otherwise 
“unsatisfiable” is returned. 

As a simple example of this procedure, consider two 
schemes: E for the theory of equality with uninterpret- 
ed function symbols and S for the theory of finite sets. 
Now consider whether 

E = [  g # d A g  # e  A b  # d A  b # e 
is satisfiable. First C is split into 

C 1 U C z U { c l  = d , } ,  ..., C i U C z U i , : ,  = d , } .  Ifaii, ,?f 

1 
1 

f ( a ) = { b , g } A f ( c ) = { d , e } h a = c h  

a = c A g # d A g # e A b # d h b # e h  
E l =  [ !(a) = c1 A /(c) = CZ 

Cz = [cl = { b , g }  A cz = { d , e } ] .  
& is run on C l  and determines that c1 = c ~ .  S is 
run on Cz u {cl  = c2} which produces the disjunction 
b = d V b = e .  The procedure is now invoked recursive- 
ly for C 1 U C z U { b  = d }  and C l U C z U { b  = e}. In both 
calls, Cz produces the disjunction g = d v q  = e which 
is unsatisfiable. Therefore, both calls return “unsatis- 
fiable,” hence C U E U S is unsatisfiable. 

We place one additional requirement on schemes 

164 



to make the equality propagation procedure practi- 
cal. Schemes must be incremental. This means that a 
scheme must be able to save its “state” when a con- 
junction of literals is satisfiable and it must be able 
to use the saved state to determine the satisfiability of 
larger conjunctions at incremental cost. 

REFORMULATION 
The DRAT technique as described in section is severe- 
ly limited by the way in which a problem is stated. 
Often, it is much more successful with an equivalent 
formulation of the problem stated in terms of a dif- 
ferent collection of nonlogical symbols. For instance, 
recall the problem about family relations given in sec- 
tion . It was stated in terms of the binary relation 
child.  It turns out that, given the current scheme li- 
brary, the DRAT implementation is much more success- 
ful when the problem is stated in terms of parents ,  a 
function from an individual to his or her set of par- 
ents. One reason this formulation is better is that the 
library contains a scheme for a theory of fixed sized 
sets. DRAT discovers an instance of this scheme that 
allows it to remove several general clauses from the 
problem including one that limits the size of parent 
sets to two. 

In an effort to circumvent this sensitivity to a prob- 
lem’s formulation, DRAT is able to reformulate a prob- 
lem in terms of new nonlogical symbols without chang- 
ing the “meaning” of the problem. Choose-instance 
is often able to find scheme instances in reformulated 
problems where it was unable to do so in the initial 
formulations. DRAT’S reformulation technique is mod- 
eled after the reformulation that people do in solving 
analytical tasks. For an example of this refer again to 
the problem and diagrams given in section . In the dia- 
grams appear concepts such as “married couples” and 
“sets of children of the same couple.” These concepts 
are not present in the initial problem formulation - 
the problem has been reformulated. 

DRAT does a particular kind of reformulation called 
isomorphic ref0 rm ula t ion in [Korf80]. We formalize 
isomorphic reformulation as a relation between thee  
ries. 
Definition 4 A reformulation map CLlbL2 between t- 
wo languages C1 and CZ is a function from clauses in 
C1 to sets of clauses in CZ. 
Definition 5 A theory T2 is an isomorphic reformu- 
lat ion of a theory TI just in case there exists a refor- 
mulation map R>(Tl),L(Tz) such that 
TI k 4 e T2 k Ri(Tl),L(Tz)(4)9 for every clause 4 in 
W l ) .  

If T2 is an isomorphic reformulation of TI, any ques- 
tion we have about what clauses are entailed by T1 can 
be answered by theorem proving in Tz.  Given the ques- 
tion, “does TI d?” we use R’ to translate 4 into 
C(T2) and then attempt to prove that T2 + R’(6). 

As a simple example of isomorphic reformulation, 
consider the following two theories: 

I R(x, I), 
T1={ R(I l  Y) 3 R(Y, t), 

R(x, Y) A R(y, z) 3 R(x, z )  
I E R-class(x) ,  
x E R-class(y) 3 y E R-class(x), I T * = (  I E R-c~uss(~) A y E R-class(z) 3 

x E R-class(2) 
T2 is an isomorphic reformulation of Tl .  To show 

this, we exhibit an appropriate R i ( T l ) , L ( T a ) .  First, 
we introduce the function y with y(R(z,y)) = x E 
R-class(y) and y(-R(z, y)) = 2 R-cIass(y). 
The function y is also defined in the obvious way 
for literals that are instances of the patterns R(z,y) 
and -R(z,y), i.e., given the constants a and b,  
y(R(a, f ( b ) ) )  = a E R-class( f (b) ) .  

Given the literals 41,. . . , &, n 2 1 
R>(T,),JQ~)(~~ v * ’  ’ v  4n) = {?‘(dl) v ” ‘ v  Y(4n)). 
Now T2 ?Z>,Tl),L(Tz)(T1), using the obvious exten- 

sion of R’ to sets of clauses. Therefore, 
T1 + 4 o T2 R’&Tl),L(T2)(4). TO see this, note that 
we can take any resolution proof of TI I- 4 and uni- 
formly apply 72i~Tl),~(Tz~ to the clauses in each step 
of the proof to obtain a proof of Ri(Tl, ,L(T2,(T1) I- 
%T1 ),C(Tz) (4). We can also define R>(T2),L(Tl) sim- 
ilarly to Ri(T1),C(Tz) and use it to transform any 
proof Ri(Tl),L(Ta)(T1) 
of Ti 4. 

R i ( T l ) , L ( T 2 ) ( 4 )  into a proof 

ADDING REFORMULATION TO 
DRAT 

One strategy for finding a satisfiability procedure for a 
theory TI is to identify a theory TZ with the following 
properties: (1) a satisfiability procedure is known for 
Tz, (2) we can find a reformulation map Ri(T l ) ,L (Tz )  
demonstrating that TZ is an isomorphic reformulation 
of 2’1 and (3) Ri(Tl),,(T2! is a computable function. 

The actual DRAT technique is an extension of the al- 
gorithm discussed in section to apply the above strat- 
egy. This extension enables DRAT to generate theories 
that are isomorphic reformulations of Tc while search- 
ing for a set of scheme instances that is a satisfiability 
procedure for Tc. DRAT has a library of reformulation 
rules, each of which is a reformulation map. These 
rules are applied to an input theory Tc to construc- 
t theories that are isomorphic reformulations of Tc. 
The extended algorithm searches for scheme instances 
in these isomorphic reformulations as well as in the 
original Tc. 

Roughly, each reformulation rule is viewed as an ax- 
iom schema that can be instantiated with nonlogical 
symbols and used as a rewrite rule to reformulate a 
theory. To understand this view, consider the follow- 
ing axiom schema in which R is a parameter: 

165 



R ( r ,  Y) e I E FR(Y). 
This states that for any binary relation, there is a pro- 
jection function FR that is a mapping from individuals 
to sets of individuals such that F R ( y )  = {z I R(I,  y ) } .  

DRAT can apply the above reformulation rule to bi- 
nary relations in T c .  When the rule is applied to 
R in T c ,  the new function symbol FR is introduced 
and Tc is reformulated in terms of FR. For instance, 
if this rule is applied to child in the family relation- 
s problem given earlier, it will introduce a function 
that we will call parents, from an individual to his 
or her set of parents. DRAT uses the formula intro- 
ducing parents, i.e., child(z, y )  e E E parents(y), to 
reformulate the problem, rewriting all occurrences of 
child(z, y )  to z E parents(y). 

This example reformulation rule can be applied to 
any binary relation in any theory. More generally, 
DRAT’S reformulation rules are conditional on proper- 
ties of nonlogical symbols in a theory. A property of 
a nonlogical symbol is simply a first-order statemen- 
t mentioning that symbol. Before giving the general 
form of reformulation rules, we introduce the function 
rf-symbols(T), the set of relation and function sym- 
bols of T. The rf-symbols(T) does not contain the 
symbols = or E, even if they are mentioned in T .  These 
are treated as special (logical) symbols in the reformu- 
lation process. 

The general form of reformulation rules is given in 
the following definition. 
Definition 6 A triple < P,Q,8 ($ 9 > is a refor- 
mulation rule when it meets the following restriction- 
s: (1) P and Q are conjunctions of clauses (both of 
which may be empty). (2) 8 and @ are conjunctions 
of literals. ( 3 )  rf-symbols(P) E rf-symbols(0) and 
rf-symbols(Q) C rf-symbols(@). (4) rf-symbols(0) 
is disjoint from rf-symbols(@). ( 5 )  0 and @ have the 
same variables. 

Rules are symmetric in the sense that -ir bicondi- 
tionals can be used to introduce new symt . in “either 
direction.” When the parameters in 0 ar-: .nstantiat 
ed with symbols in a theory T ,  the rule is used to 
reformulate T in terms of the new symbols in @. The 
conjunction of clauses P is the condition that must be 
true of a theory for the reformulation rule to be used 
to rewrite 8 as @. When the parameters in IEr are in- 
stantiated with the symbols in T ,  the rule is used to 
reformulate T in t e r m  of the new symbols in 0.  In 
this case, Q is the condition that must be true for the 
rule to be used. 

Here is an example of a conditional reformulation 
rule: 
< [. E F(Y) * F ( Y )  = { 2 ) 1 , 1  

[z E F ( y )  e z # I A I = F’(y)] >.’ 
This rule can be applied to any theory T containing 

a function F whose range elements are sets of size one, 

‘The symbol I is used in specifying axioms about par- 
tial functions, F(a) = I means that F(a) is undefined. 

i.e., P = [I E F ( y )  3 F ( y )  = {z}]. LYhen applied, 
the rule reformulates T in terms of a function F’ ?uch 
that F’(y) = I just in case 2 E F ( y ) .  Q is ernpr; in 
this rule because the rule can always be applied 111 the 
other direction. 

The following is an abstract description of the DRAT 
algorithm extended to do reformulation: 

instances + 0 
TI - 0 
TA + Tc 
R’ + A(t).t 
UNTIL empty(Th) DO 

EITHER 
ref-pairs - choose-ref-pairs(T&) 
IF null(ref-pairs) THEN EXIT-WITH failure 
symbols, rule + choose(re f-pairs) 
instantiated-rule - instantiate(rule, symbols) 
-’. - R(instantiated-rule, T&) 
’ *  +- X(t).R(instantiated-rule, R’it)) 

jtance - choose-instance(T&) 
1.‘ null( instance) THEN EXIT- WITH failure 

instances - union(instance, instances) 
TI + union(theory(instance), T I )  
FOR EACH b E TA 

WHEN TI ‘k-ib0 + T& - 6 
END FOR 

END UNTIL 
DRAT nondeterministically either chooses a reformu- 

lation rule and reformulates T& or adds the theory of 
the new instance to TI. Choose-instance identifies 
an instance by identifying properties of the nonlogi- 
cal symbols in T&. It looks for properties that appear 
in the theories of schemes. For example, when the 
scheme library contains a scheme one of whose axiom- 
s is R :. y) * R(y, :). D R A T  attempts to choose in- 
stan.- )f that scher2:- by looking for binary relations 
in T at have the i. nmetry property. 
Ct. :>e-ref-ruls .jes the identified properties 

of n .  ztogical symbois in T& to identify reformu- 
lation rules that can be applied to those symbol- 
s. Rules introduce new symbols as explained above. 
Choose-ref-rules returns a list of < symbols, rule > 
pairs, where symbols is an ordered list of nonlogical 
symbols. Each pair in the list can be applied to Tc by 
instantiating the parameters of the rule with symbols. 
For a rule of the form 

< P , Q , 8 e @ > ,  
symbols can either be used to instantiate the param- 
eters in 8 or in @, but not both. Conditional rules 
are returned only when T& entails their condition. 
Choose-ref -rule guarantees that if symbols instanti- 
ates then P follows from TA; If symbols instantiates 
rk, it Axantees that Q follows. 

As : )re, if DRAT exits with T& empty, it has suc- 
ceedel. I finding a TI equivalent to Tc; Otherwise, it 
has  fad i. 

166 



Again we have suppressed the issues of search by 
giving a nondeterministic procedure. The search con- 
ducted by the extended algorithm is over a much larg- 
er space than the search conducted by the simple al- 
gorithm described in section . The DRAT implemen- 
tation with reformulation must compare alternative 
problem formulations. Fortunately, we have found 
some effective heuristics for controlling the search. See 
[VanBaalen891 or (VanBaalen911 for details. 

The procedure instantiate, instantiates a rule 
with respect to the nonlogical symbols in symbols to 
produce an instantiated-rule.  R is the reformulation 
procedure. We describe this procedure for the case 
where a rule of the form 
< P , Q , @ 1 A . . ~ A @ ,  e?!> 
is used to rewrite occurrences of d 1  A * .  . A d,, the from 
conjunct, to occurrences of Q ,  the to  conjunct. The 
procedure for applying the rule in the other direction 
is obtained by reversing the biconditional and replac- 
ing references to P by references to Q. 

Each set of unit clauses in T& of the form 
{(@,)a,. . . , (B,)a}, where r is a substitution for the 
variables in the B i ,  is rewritten as the set of unit 
clauses (?!)u. Each clause containing the literals 
(-.@,)a,. . . , (@,)a is rewritten to contain ( -I t ) . .  Af- 
ter all possible occurrences are rewritten, the clauses 
in Q are added to the rewritten theory. 

We call a rewriting produced by 'R complete when it 
removes all of the nonlogical symbols appearing in the 
from Conjunct. R may or may not produce a complete 
rewriting. For example, given a right hand side of the 
form R( f ( x ) ) ,  rewriting will only be complete when R 
and f appear in a theory only in patterns of this form. 
If the rewriting process is not complete, 'R adds the 
instantiated 0 e It  to the rewritten theory. 

As an example of applying R, consider again the rule 
< [. E F(Y)  * F(y)  = {ZlI ,  9 

[+ E F(y)  e x # I A z = F'(y)]  >. 
As noted, the condition P must follow from a theory to 
reformulate F as F' in that theory. Since the condition 
Q is empty, there are no clauses to add to the resulting 
theory. If the rewriting is not complete, [z # I A 
t = F ' ( y )  e t E F ( y ) )  is added to the rewritten 
theory. Since there is no condition Q, this rule can 
always be used, in the other direction, to reformulate 
F' as F .  In this case, P is added to the rewritten 
theory. Again, the biconditional may need to be added 
to the rewritten theory. 

To ensure that the extended DRAT algorithm gen- 
erates only isomorphic reformulations, each reformula- 
tion rule must be shown to generate only isomorphic 
reformulations. To guarantee this, we require that, 
when instantiated, each reformulation rule be an e t -  
tending definition. 
Definition 7 A reformulation rule < P , Q , 8  ($ ?! > 
is an eztending definition if for all theories T the fol- 
lowing conditions hold: 
1. LVhenever the r f - s y m b o l s ( @ )  C r f - s y m b o l s ( T ) ,  

r f - symbol s (  rk') is disjoint from r f -syrnbols (T)  and 
T P ,  then every model of T can be expanded to 
a model of T u (0 e I t } .  

2 .  Whenever the r f - s y m b o l s ( @ )  E r f - s y m b o l s ( T ) ,  
r f - syrnbols (O)  is disjoint from r f - s y m b o l s ( T )  and 
T + Q ,  then every model of T can be extended to a 
model of TU (0 e a } .  
Section shows that for any reformulation rule rule ,  

X ( t ) . R ( r u l e , t )  is a computable function and so long as 
rule is an extending definition, that whenever a theory 
T entails the appropriate condition of rule, R(rule ,T)  
is an isomorphic reformulation of T .  

The 72' produced by DRAT on the problem < 
C, Tc, Q, > is the composition of reformulation maps 
used by the algorithm to reformulate Tc. Since each 
reformulation map generates an isomorphic reformuh 
tion, R'(Tc) is an isomorphic reformulation of Tc.  S- 
ince each step is computable, R' is a computable func- 
t ion. 

Finally we point out that, since ?! and 0 in the re- 
formulation rule < P, &, Q ($ Q > are required to have 
the same variables, R ' ( C )  and R'(@) will always be 
ground. However, even though C and 0 are conjunc- 
tions of ground literals, R ' ( C )  and R*(Q,) may not 
be. To see this, suppose that C contains the literal -4 
and R'(q5) is a conjunction. Then -R'(d) will be a 
disjunction. 

Section shows that when DRAT uses reformulation 
in designing a satisfiability procedure for a problem 
< C, Tc, 0 > and R'(C) is a conjunction of literals, 
the problem can be solved by solving 
< R'(C),R'(Tc),R'(0) >. The fact that a satisfia- 
bility procedure for a reformulation of a problem re- 
quires R ' ( C )  to be a conjunction of literals is not a 
significant difficulty in the more general setting dis- 
cussed in section in which satisfiability procedures are 
used in conjunction with a theorem prover. 

AN EXAMPLE 
In practice, we have found that adding reformulation 
to DRAT increases its effectiveness considerably. W e  il- 
lustrate this with a relatively simple example excerpted 
from the DRAT implementation design of a satisfiability 
procedure for the example problem given in section . 
We illustrate the implementation's behavior on the set 
T of clauses: 

T m a r r i e d ( z ,  x), 
marr ied (+ ,  y) j marr ied (y ,  x) 
marr ied (+ ,  y) A marr ied (y ,  z )  =+ -marr i ed ( z ,  z )  
marr ied (y ,  x) A m a r r i e d ( z ,  z) 3 y = t 
There are three schemes in DRAT'S library that are 

relevant to the example. The scheme 3 for the the- 
ory of partial 1-1 functions with parameters F and 
F', which are inverse functions, and theory($)= (2 = 
F ( y )  A z # I e y = F'(x )  A y # I}; The scheme S2 
for the theory of sets of size two with S as a parameter 
and theory(&)= (11 E S A  1 2  E S A  1 1  # z? 3 s = 

167 



. .  

{ z1 ,12 } } ;  And, the scheme E for the theory of equality 
with uninterpreted function symbols. 

The relevant reformulation rules are: 
rt =<, R(I,Y) * Y E F R ( z )  > 
r? =< I E F ( y )  3 F(y) = {z}, , 

r3 =< ( I  # I A y # I) 3 z = F ( y )  
[z E F ( y )  e I # I A z = F’(y)] > 

[ J  = F(Y) A I # I e F’(Y) = {I, Y }  A z # Y] > 
As is typical in the implementation, these rules are 

normally used only in one direction. As noted in sec- 
tion , r1 reformulates a binary relation in a theory as a 
function FR onto sets: FR(z) = {y 1 R(z ,  y)}. Also as 
noted in section , when applied to a theory containing 
a function F whose range elements are sets of size one, 
r2 introduces a function F’ such that F’(y) = z just in 
case z E F(y) .  The rule r3 reformulates an F that is 
its own inverse as a function F’, mapping an individual 
into sets of size T W O  such that F‘(z) = {z, F ( z ) } .  

Given the sc’ ‘:ies above, DRAT is unable to design 
a satisfiability : r ~ e d u r e  for T without reformulation. 
In an effort to amgn a satisfiability procedure for all of 
T,  the DRAT implementation repeatedly reformulates 
the problem, finally producing a formulation in terms 
of a function that we will call couple, mapping an in- 
dividual to the married couple of which he or she is a 
member. 
DRAT uses rule r1 to reformulate T in terms of a 

function that we will call spouses, a mapping from an 
individual to the set of his or her spouses. R(r1,T) is 

y = F ( z ) ,  , 

z 4 kpouses(z), 
z E spouses(y) j y E spouses(z) 
z E spouses(y) A y E spouses(r) a z 4 spouses(z) 
y E spouses(z) A z E spouses(z) =+ y = z 
DRAT uses rule r2 to reformulate ‘R(r1, T) in terms 

of a partial function that we will call spouse, a 
mapping from an individual to his or her spouse. 
R ( n , R ( n , T ) )  is 
z # spouse(z) v z = I, 
z = spouse(y) A z # I j y = spouse(z) A y # I 
z = spouse(y) A z # I A y = spouse(r) A y # I 

y = spouse(z) A y # I A z = spouse(z) A z # I 
j z # spouse(z) v I = I 

* y = z  
Note that the second and fourth clauses in this set 

follow from instances of 3 and E respectively. Hence, if 
DRAT were to terminate at this point, TA would include 
only the first and third clauses. 
DRAT uses rule r3 to reformulate the above theory 

in terms of the function couple. The result is 
couple(z)  # { I ,  z} v z = z, 
couple(z) = {t, y} A z # y * 

couple(y) = {Y, A Y # 
couple(z) = {t, y} A z # yA 

CouPWY) = {Y, z} A Y # * 
couple(z) # {z, z }  v z = z ,  

couple(y) = {z, Y} A Y # z A  
couple(z)= { z , z } A  z # z 3  y =  z 

All of the clauses in this set follow from the com- 

bination of S2 and an instance of E containing the 
uninterpreted function symbol couple. Thus, through 
the use of reformulation, DRAT succeeds in designing a 
satisfiability procedure for the theory T. \Vithout re- 
formulation it is unable to design a procedure for any 
subset of T.  

STEPS TOWARDS THE 
COMPLETENESS OF DRAT 

This section proves two results towards the complete- 
ness of DRAT. First, we show that DRAT designs sat- 
isfiability procedures. If DRAT successfully designs a 
procedure for some set of axioms Tc, then that proce- 
dure can be used to decide the problem < C, Tc, 0 > 
for any conjunctions of ground literals C and 0.  Sec- 
ond, we consider the addition of reformulation to DRAT 
and show that a satisfiability procedure for R’(Tc) can 
be used as a satisfiability procedure for TC so long as 
R’(C) is a conjunction of literals. These results are 
necessary preliminaries for the proof of completeness 
in section . 

DRAT DESIGNS SATISFIABILITY 
PROCEDURES 
Before proceeding to prove that DRAT designs satisfi- 
ability procedures, we recall properties of schemes p- 
resented thus far and discuss some additional required 
properties. 

Recall that a scheme for a theory T is a procedure 
that decides the satisfiability of C U T ,  where C is a 
conjunction of ground literals. Given a particular C, 
each scheme also computes the set of equalities between 
constants in C that follow from C U T. If T is noncon- 
vex, its scheme also computes disjunctions of equalities 
between constants in C that follow from C U T .  

We call a first-order theory whose formulas contain 
no existential quantifiers a quantifier-free. theory. An 
additional requirement on .;themes is that their theo- 
ries be quantifier-free. As B practical matter, this is 
not a serious restriction beyond restricting schemes to 
be tractable. See [Oppen80] for further discussion of 
this point. 

The theories of schemes are also required to have 
infinite models. The equality propagation technique 
may not work if a theory has only finite models be- 
cause, given a set of constant symbols larger than the 
set of individuals in the model’s domain, such a theo- 
ry implies the disjunction of equalities between those 
constant symbols. Theories with infinite models do 
not imply disjunctions of equalities between variables. 
Therefore, given a theory T with infinite models, such 
disjunctions can only follow from TU C, for some 2 
whose satisfiability is being decided. Any disjunctions 
of equalities between constants that follow must in- 
volve only constants mentioned in E. This restriction 
to theories with infinite models does not appear to be 
significant. To date, we have not found any schemes 
that we could not include because they violated this 
restrict ion. 

168 



The theorem proved below is similar to the the- 
orem given in [Nelson&Oppen79]. It differs in the 
addition of the requirement that each scheme’s the- 
ory have infinite models. The theorem appearing in 
(Yelson&Oppen79] is incorrectly stated. The reason a 
different proof is included here is that the proof giv- 
en in [Nelson&Oppen79] is incorrect.z We also include 
our proof because the technique is much more direct 
and serves as  a foundation for research in progress to 
extend our results. 

Theorem 1 Let TI  and Tz be theories with no com- 
mon nonlogtcal symbols. If there are schemes for Tl 
and Tz, there is a scheme for Tl u Tz. 

Proof: We prove that the procedure described in 
section for combining two schemes is a scheme for Tl u 
Tz. If the scheme for TI or Tz reports “unsatisfiability,” 
clearly C1 UCzUTl UT2 is unsatisfiable and, since C1 U 
E2 and C are cosatisfiable, C U TI UT2 is unsatisfiable. 
LVe must show that if the procedure of section reports 
“satisfiable,” C U TI u Tz is satisfiable. This is done by 
showing how to construct a model of CUT1 UT2 when 
the procedure reports “satisfiable.” 

Let C = { c o ,  . . . , c,} be the set of constant symbols 
appearing in C1 or C2. Let E be the set of equalities 
propagated by the procedure of section . As we will see, 
when the procedure halts, E contains all the c1 = c2 

such that c1, cz E CAC~UCZUT~UT~ c1 = c2. E will 
also contain any equalities chosen when case splitting 
occurs. 

Let E =  {cl = c:! I C ~ , Q  E C h q  = c2 4 E}.  Since 
the schemes for TI and Tz reported “satisfiable,” there 
are models of C1 U T 1  U E and &UT2 U E. Let M I  and 
,WZ be models of C1UTlUE and CzUT’UE respective1 
that agree on the interpretation of the equalities in $ 
We show how to construct a model M+ C U TI  U TZ 
from M I  and M z .  

Before giving this construction, we show that i t is  
possible to pick an M1 and M2 that agree on E .  
First note that if is empty, all M1 and M2 agree. 
Now suppose that E is not empty. In this case, there 
exists an e l a n d  an that do not satisfy any e- 
quality in E .  For suppose to the contrary. In par- 
ticular, suuose that every Mlsatisfies some equality 
in E. If E contains exactly one equality, c1 = c?, 
C1 UT1 u E  c1 = c2 and c1 = c2 E E ,  not E.  I f 3  
contains more than one equality, C1 UT1 U E entails the 
disjunction of equalities in E. But then C1 u TI U E 
is nonconvex which is impossible because, instead of 
returning satisfiable, the algorithm in section would 
have case split in this situation. This same argument 
can be made for M z  and, hence, there existsan Mz 
that does not satisfy any of the equalities in E. Thus, 
we can choose an M 1 and MLthat  agree on the inter- 
pretation of the equalities in E. 

2A correct version of the theorem appears in [Nelson84], 
however, the proof given there is still incorrect. 

Note that since M1 and Mz agree on the interpre- 
tation of the equalities in E and in F, they agree on 
the interpretation of every equality between constants 
in C. 

Let MI=<  Dl,R1,Fl,C1 >, where D1 is the do- 
main of M I ,  R1 is the interpretation of relation sym- 
bols of M1 in D1, F1 is the interpretation of the 
functions symbols of M1 and C; is the interpretation 
of individual constant symbols in J W ~ .  Similarly, let 
Mz=< D?, Rz, Fz,Cz >. 

We now construct M by merging M1 and JMZ as 
follows. The domain of M is D1 U D;, where D; is 
the domain of Mz’, a modified version of M : .  Ma’ 
is obtained by replacing individuals in D? by individ- 
uals in D1 when they are designated by the same con- 
stant symbol. For all constant symbols c E C, re- 
place every occurrence of CZ(C) in DZ by C,(c), i.e., 
Cg(c) = Cl(c) when c is a shared constant symbol 
and Ci(c) = Cz(c) otherwise. For all R in the dc- 
main of Rz, let Ra(R) be the set Rz(R) modified by 
the above replacement procedure. Similarly, let F; be 
the new interpretation of the function symbols of M2.  

M2 and MI’ are isomorphic structures because M1 
and MZ agree on the interpretation of every equality 
between constants in C. If M1 and M Z  did not agree, 
then M z  and M2’ would not be isomorphic. For sup- 
pose, that M 1 b  c1 = c2 but M z ~  c1 = c2. Then the 
two constant symbols designate the same individual in 
Di and different individuals in 0 2  and, hence, M 2 ’  is 
not isomorphic to M2. 

To finish the construction of M ,  we take M = <  Dl U 
D ; , R I U ~ , F I U F ~ , C I U C ~  >. SinceMl+C;UTl 
and Mz’ + CZ UT,, M+ C1 U CZ U TI  U Tz .  Since 
E1 u Cz and C are cosatisfiable, M +  C U TI U Tz and 
the proof of the theorem is complete. 0. 

The fact that DRAT designs satisfiability procedures 
is a direct consequence of theorem 1. Since the result of 
combining two schemes is again a scheme, any number 
of schemes can be combined by this method. 

Mz’ =< Di,Rz,Fi,Ci >. 

DRAT DOES ISOMORPHIC 
REFORMULATION 
This section includes the proofs of two properties of 
DRAT’S reformulation procedure R .  These results are 
sufficient to show how a satisfiability procedure gen- 
erated by DRAT for some reformulated theory can be 
used to solve the original problem. 

Lemma 1 If a reformulation rule (rule) is an extend- 
ing definition in T of the form < P,Q,O * 0 > and 
T + P ,  fhen  R(rule,T) i s  an isomorphic reformula- 
tion of T .  

Proof: The condition that must be met is that if 
T P ,  T + 4 R(ru le ,  T )  + R(ru le ,  4), 
for any clause 4 E C(T).  We prove the equivalent fact 
that if T P ,  

169 



SAT(T u (-4)) e SAT(R(rule,T) u -R(rule,d)), 
where S.4T(T) means that T is satisfiable. 

[*] If SAT(TU {-4}), SAT(TU (8 4} u { i d } )  
because, by the definition of extending definition, every 
model of T can be extended to a model of Tu { 0 e 4 }. 
Therefore, there exists a model of T u ( 8  e Q}u{+}. 
But 
T U  { O e  4}U{-d} ~ R ( r u l e , T ) U ' R ( r u l e , ~ ) .  
Hence every model of T U  (8 e 4) U {+} is a model 
of R( rule, T )  u -R( rule, d). Since there exists a mod- 
el of T U  (0 ($ 9) u {+}, there exists a model of 
R( rule, T) u 'R( rule, 4) and hence, it is satisfiable. 
[e] The proof in this direction is similar, with the 

added step of showing that every model of 'R(rule, T)U 
TR(rule, 4) can be extended to a model of%!(rule,T)U 
(0 e 4} u -R(rule,4). Since rule is an extending 
definition, every model of a theory TI that entails Q 
can be extended to a model of TI U (0 o 9). By 
the definition of R, the clauses of Q will appear in 
R(rule,T) and hence R(rule,T) b Q. Therefore, ev- 
ery model of R(rule ,  T )  can be extended to a model of 
R(rule,T)U{@ o 4). Thus, ifR(rule,T)U-.R(4) is 
satisfiable, so is T U  {+}. 0 

It follows directly from this lemma and the fact that 
extending definitions can be used in either direction, 
that a reformulation rule (P A Q) 3 [e o 91 with 
the rf-symbols(@) instantiated in term of a theory T 
can be used to reformulate T in terms of 8 so long as 

Lemma 2 For any reformulation rule (rule), fhe 
function X(t).R(rule, t )  is compufable. 

Proof: Suppose the biconditional of rule is 8 9 
and R applies rule to rewrite occurrences of @ to 
occurrences of 8 in TI as described in section . S- 
ince r f - s  ymbols( 8) are disjoint from rf-symbols(T), 
a rewrite step can never introduce a pattern of liter- 
als to which rule can be applied a second time. The 
rewrite is applied repeatedly until one of the following 
events occurs: (1) all of the symbols in rf-symbols(*) 
are removed from T or (2) no new occurrences of 9 
can be found, even though symbols in rf-symbols(@) 
are still present. In either case, repeated application 
of the rewrite rule terminates. Hence, A(t).'R(rule, t )  
is computable. 0 

The two preceding lemmas are sufficient to show 
that a satisfiability procedure for 'R*(Tc) can be 
used to solve the problem < C,Tc,@ >, so long 
as R'(C) is a conjunction of ground literals. As- 
suming that R ' ( C )  is a conjunction, the satisfiabili- 
ty procedure is used to solve the problem by solving 
< R'(Z),R'(Tc), %!*(a) > as follows. For each Q E a, 
i f  'R'(4) is a conjunction of literals, we use the pro- 
cedure to determine if 7Z*(C) U 7ZR'(Tc) U '%!'(#) is 
unsatisfiable. Th . is the case if and only if CUTc U-4 
is unsatisfiable. -Re(+) is a disjunction of literals, 
the procedure is . ,:d to determine the satisfiability of 

U ~ ' ( T C )  I-. i ,  for each literal 1 E -E*(#). If 

T b Q .  

any of these is satisfiable, R ' ( C )  u R'(Tc) u -'R.(+) 
is satisfiable; otherwise it is unsatisfiable. 

THE COMPLETENESS OF DRAT 
Two simplifying assumptions were made in the previ- 
ous sections. First, in definition 3,  it was assumed that 
a problem for D R A T  was of a restricted form. Second, 
it was assumed that DRAT'S success depended on de- 
signing a satisfiability procedure for all of Tc. Both of 
these assumptions are now relaxed and we show how a 
literal satisfiability procedure is interfaced with a res- 
olution theorem prover in such a way that the proce- 
dure/theorem prover combination is complete. 

A problem for DRAT is now taken to be a pair < 
I',b >, where I' is a set of first-order formulas and 4 
is a first-order formula. A pair < r, 4 > is interpreted 
as the question, 'T I= Q?" 

As a typical preprocessing step for resolution theo- 
rem p rc~ .  2g, r ind -a are converted to sets of clauses 
which w:'. be c4led r' and -4' respectively. Let Tc 
be the sr?. . I f  nonground clauses in r'. As before, DRAT 
is used t ,  design a literal satisfiability procedure for 
Tc. However, instead of exiting with failure if it is 
unable to design a procedure for all of Tc, it returns 
the satisfiability procedure and T&, those clauses not 
incorporated into the satisfiability procedure. Also, as 
before, DRAT returns the reformulation map 72'. 

The algorithm given in section refers to the set of 
clauses for which a literal satisfiability procedure has 
been designed as TI. Here that procedure is referred 
to as ST,. is used along with a 
resolution theorem prover to demonstrate the unsat- 
isfiability of Cl = 'R*@"') U %!*(-+'). The nonground 
clauses of Cl are manipulated by the theorem prover in 
the usual way, except that clauses in TI are prohibited 
from resolving with ground clauses. These resolutions 
are unnecessary because f i r  is a "compression" of any 
resolution steps that can result from such a resolvant. 
&, is used in the manipulation of ground clauses in  

Cl and ground clauses derived from Cl during the- 
rem proving. It is interfaced to the theorem prover via 
theory resoluiion[Stickel85]. One type of theory reso- 
lution, called total narrow theory resolution, requires 
a decision procedure for a theory T, given a set of lit- 
erals L, to compute subsets L' of L such that L' U T 
is unsatisfiable. Such a procedure is used to compute 
T-resolvants of a set of clauses as follows. Consider the 
decomposition of the clauses into K i  V L,,  where each 
K, is a single literal in L(T) and Li is disjunction of lit- 
erals (possibly empty). For each subset of the I<,, say 
{ K , ,  , . . . , K,.}, that is unsatisfiable in T, the clause 
L1 v . . . v L, is a T-resolvant. 

The theorem prover constructs Tpresolvants from 
ground clauses, using ,!+r to compute sets of ground 
literals that are unsatisfiable in TI. Let GrL be the set 
of ground unit clauses in L'l and let GrCl be the set of 
ground nonunit clauses in C*l. First, the ground clauses 
are separated into clauses that are in L(T1) and clauses 

We show how 

170 



that are not. This is accomplished for the clauses in 
CrL using the procedure described in section ; It is 
accomplished for clauses in GrCl in a similar fashion. 

If a ground clause c1 contains a literal that is not 
in C(T,) and a ground clause c2 contains the negation 
of that literal, the theorem prover computes the re- 
solvant of c1 and c? in the normal way. TI-resolvants 
are computed using ST, to compute sets of ground lit- 
erals that are unsatisfiable in TI as follows. Let Gr.bT, 
be the set of literals in GrL that are in C ( T I ) .  Let 
C r C f T ,  be the set of literals in L(TI) appearing in 
clauses of GrCl. We input progressively larger subsets 
of G r L i t s  = GPLT, U GrCfT, to ST, as long as those 
sets are satisfiable in TI. Once a set is unsatisfiable in 
TI, all supersets of it will also be unsatisfiable. When 
the theorem prover deduces a new ground literal in 
G r L T , ,  it is added to G r L i t s .  The smallest subsets 
of G r L i t s  found to be unsatisfiable in TI are used to 
compute TI-resolvants of ground clauses. 
Theorem 2 Given the problem < r,4 >, let ST, be 
a literal satisfiability procedure for TI C 7Z*(I‘). If 
r 4, ST, combined with the theorem prover wil l  
demonstrate the unsatisfiability of Cl. 

Proof: In [Stickel85], Stickel shows that, given a set 
of clauses I<; V L , ,  if a decision procedure for a theory 
T computes all subsets K,  that are minimally unsatis- 
fiable in T, total narrow theory resolution is complete. 
We must show that the above procedure for computing 
TI-resolvants computes all subsets of G r L i t s  that are 

. minimally unsatisfiable in TI. Clearly, so long as ST, is 
a literal satisfiability procedure, the above procedure 
computes all these subsets. Thus, the completeness 
result follows directly from the results of section . 0 

The procedure described above can be made much 
more efficient. There are several refinements used by 
the DRAT implementation to consider far fewer subset- 
s for unsatisfiability in TI. We discuss two of these 
here. One refinement is to distinguish between literals 
in GrLT,  and GrCfT,. First, we consider the satisfi- 
ability of G r L T , .  If this is unsatisfiable, we are done. 
Otherwise, we consider progressively larger sets of lit- 
erals appearing in clauses in GrC/T,. For each such set 
s, ST, is used to determine whether or not GrLT,  U s 
is unsatisfiable in TI. 

Note that the subsets identified with this refinement 
are not always minimal: it is possible for a subset of 
GrCfT, union a subset of CrLT, to be unsatisfiable in 
TI. However, it turns out that completeness of theory 
resolution is retained in this case, since the extraneous 
literals are in GrLT,  and, therefore, are unit clauses. 

A second simpler refinement only considers subsets 
of GrCfT, each of whose elements appears in a different 
clause in CrCl. 

As a final point about the efficiency of the procedure 
for computing subsets that are minimally unsatisfiable 
in TI, recall that schemes are required to be incremen- 
tal. Because of this, ST, is used very efficiently to 
consider progressively larger sets of literals. 

It is often most effective to leverage the use of ST, 
by doing as much of the theorem proving as  possible 
at the “ground level.” The DRAT implementation uses 
“set of support” strategy which is very effective in ac- 
complishing this when -4’ is ground because it tends 
to produce ground resolvants. 

Summary and Ongoing Work 
We have presented a formalization of DRAT: a tech- 
nique for automatic design of satisfiability procedures. 
We have shown how these procedures are interfaced to 
a theorem prover so that it can, in many cases, prove 
theorems more efficiently. Given ly, the set of axioms 
of a problem, and Sqt, a literal satisfiability procedure 
designed for 4’ q ,  we have proven that for any first- 
order statement 4, if \Ir + 4, the theorem prover/Su, 
combination will prove 4. 

The major steps of our argument were as follows: 
1. We showed that a combination of satisfiability proce- 

dures with certain properties is again a satisfiability 
procedure. 

2. We showed that the reformulation that is essential 
to DRAT’S effectiveness is isomorphic reformulation 
and, therefore, a satisfiability procedure of a refor- 
mulated theory can be used to solve problems in the 
original theory. 

3. We proved the completeness of our technique for 
combining literal satisfiability procedures with a the- 
orem prover. In this combination, Sol is used to 
compute 4’-resolvants from ground clauses and the 
theorem prover is restricted so that it does not re- 
solve ground clauses on literals in C(4’). 
In our ongoing work, we are attempting to extend 

DRAT’S scheme combination technique. As much as 
possible, we would like to remove the restriction on 
the sharing of nonlogical symbols between componen- 
t scheme instances in combinations. We are exploring 
the conditions under which limited types of overlap be- 
tween nonlogical symbols is allowed. When overlap is 
allowed, component schemes must propagate more in- 
formation than just equalities between constant sym- 
bols. In most cases where overlap is allowed and in 
which the schemes propagate at least the set of equal- 
ities between constants, it is not difficult to show the 
completeness of a propagation technique. The major 
issue that arises is proving that the propagation termi- 
nates. 

As an example, consider allowing two schemes to 
share function symbols. The schemes must propagate 
all equalities between ground terms involving shared 
function symbols. The proof technique used in section 
can be extended to prove that such schemes combined 
by an appropriately extended propagation technique 
will produce semi-decision procedures for the combi- 
nations of their theories. However, in general, it is not 
possible to prove that the propagation will terminate. 

171 



One situation in which overlap is allowed occurs 
when the theories of schemes are sets of clauses in a 
sorted first-order logic. In this case, a function symbol 
F whose range is disjoint from its domain can be shared 
between schemes because terms of the form F ( F ( r ) )  
are not well formed and, hence, it is easy to show that 
propagation of terms involving F will terminate. 

Acknowledgements Richard Fikes, Bob Nado, 
Mike Lowry, and David McAllester provided helpful 
comments on drafts. Dave McAllester pointed out the 
error in Nelson & Oppen’s proof of the combination of 
satisfiability procedures and suggested the technique 
we used in our proof. Bob Nado participated in nu- 
merous discussions on many aspects of the paper. 

References 
Br achman, R.J., Fikes, R.E. 
and Levesque, H.J., “KRYPTON: A Functional Ap- 
proach to Knowledge Representation,” in Brachman, 
R.J and Levesque, H.J. (editors), Readings in Knowl- 
edge Representation, pp. 411-429, Morgan Kaufman- 
n, 1985. 
Cohn, A.G., “Many Many Sorted Logics,” Workshop 
on Principles of Hybrid Reasoning, pp.63-78, 1988. 
Korf, R.E., “Toward a Model of Representation 
Changes,” Artificial Intelligence, 14, pp.41-78, 1980. 
Loveland, 
D.W., Automated Theorem Proving: a logical basis, 
North Holland, 1978. 
Selman,B. and Kautz, H., “Knowledge compilation 
using horn approximations,” AAAI91, pp. 904-909, 
1991. 
Nelson, G. and Oppen, D.C., “Simplification by Co- 
operating Decision Procedures,” A CM Tmnsactions 
on Programming Languages and Systems, 1, pp.245 
257, 1979. 
Nelson, G. and Oppen, D.C., “Fast Decision Proce- 
dures Based on Congruence Closure,” Journal of the 

Nelson, G., “Combining Satisfiability Procedures by 
Equality-Sharing,” in Bledsoe, W.W. and Loveland, 
D.W., Automated Theorem Proving: After 25 Years, 
American Mathematical Society, 1984. 
Oppen, D.C., “Complexity, Convexity and Combina- 
tions of Theories,” Theoretical Computer Science, 12, 
pp.291-302, 1980. 
Stickel, M.E., “Automated Deduction by Theory Res- 
olution,” Automated Reasoning, 1, pp.333-355, Reidel 
Publishing Co., 1985. 
Van Baalen, J., “Toward a Theory of Representa- 
tion Design,” MIT Artificial Intelligence Laboratory, 
Technical Report 1128, 1989. 
Van Baalen, J . ,  “The Completeness of DRAT, a Tech- 
nique for the Automatic Design of Satisfiability Pro- 
cedures,” KR91, pp. 514-525, 1991. 
Van Baalen, J . ,  “Automated Design of Specialized 
Representations,” to appear in Artzficial Intelligence. 

9 

ACM, 27, pp.356-364, 1980. 

172  



Sensor/Data Fusion Research Outline 

Kyriakos P. Zavoleas 
Department of Industrial Engineering and Information Systems 

Northeastern University 
kyriakos@nueng.coe.northeastern.edu 

This article summarizes some aspects of the research carried out in the Center of Electomagnetics 
Research, Northeastern University, in the context of the Sensor/Data Fusion project, under the supervi- 
sion or Prof. M. M. Kokar; our interest in change of represnetation originates by our application needs. 
Related issues of our research are briefly discussed in the following paragraphs. 

Sensor/Data Fusion (SDF) is an application driven discipline, facing the problem of associating, 
combining and compromizing among various information sources. An information source can be a 
physical sensor, data from data/knowledge bases, or an external constraint or guidance either from the 
human or frome another system. Sensor/Data Fusion can be included in the more general field of Sensory 
Information Processing, where the term “sensor” is used in a broad sense. 

Our research in the area of SDF lies in between theory and practice. The main goals set are the 
following: 

1. Develop a systematic approach (a methodology) for designing, implementing, testing and main- 
taining sensor/data fusion systems that can: 

(a) interpret sensory information, 
(b) reason about situations using this information plus inputs from data bases (collections of 

known facts) and knowledge bases (collections of rules and heuristics) and other SDF systems. 

2. Through theoretical and experimental investigations develop a theoretical framework io which 
designs of such systems can be formulated and analyzed. 

The approach taken in this research is goal driven: first propose design requirements and specifi- 
cations, then identify theoretical questions needed to be answered in order to carry out the proposed 
design, and then investigate these questions in a systematic way. 

The prevailing idea in our conceptualization of a SDF system is to follow: data should be dynamically 
transformed, processed and represented into suitable forms, so as to facilitate combining and reasoning 
about them. To restrict the complexity issue of a Sensor/Data Fusion System, we have proposed a 
layered architecture [KZRSl]. In establishing a good definition for the layers two factors are considered: 
the semantics of the data, and the form of representation used. To transform data from one layer to 
another a process of abstraction must be invoked; on the other hand a fusion process combines data of 
the same layer into data of the same or adjacent layers. While the system requirements of autonomy, 
fidelity, consistency, and versatility must be borne in the designer’s mind, the main design issues are: 

0 what are the layers for a particular class of domains, 

e what are the abstraction and fusion mechanisms, 

0 what should be the structure within the layers, 

0 how would the system dynamically choose among alternative processing paths. 



An initial approach to guide the design of a Sensor/Data Fusion System makes use of logic [IiZ92]. 
This provides for an idealized framework, which should be borne in mind in the design of a SDF system; 
however, in an actual design, issues of noise and uncertainty must be also dealt with. From the logical 
standpoint, we have to deal with theories and their models; collectively, they represent formal systems. 
Theories are collections of statements about the world expressed in a particular formal language (language 
of the theory). A theory includes a set of inference rules which are used for deriving new statements 
through the derivation process (theorem proving). Associated with a theory and a model is a set of 
mappings (interpretation rules) which assign correspondence between the theory and the model. This 
correspondence must fulfill the adequacy postulate - whatever statement can be derived in the theory, it 
can be shown to be true in the model. The model in our case is a set of data (including sensory data) 
about the world together with a set of operations on the data. Instead of deriving statements about 
the world using the theory, one can check whether the statement is fulfilled in the model; this process 
is called model checking. It is an open research question whether and when it is better to use theorem 
proving and when to use model checking. We intend to investigate such a question for the domain of 
sensor/data fusion. 

The requirement of deriving consistent sets of conclusions 'nlist incorporate both models (real data 
about the world) and theories. In order to preserve consistenc: b- hen implementing SDF system layers 
we need to make sure that both the abstraction process and t..- fusion process fulfill this requirement. 
As a consequence of this, in our logical framework we could foririulate the following definition of fusion: 

Fusion is a process of combining two formal systems (two models and two theories) into a new formal 
system in such a way that we obtain a new formal system, Le., such that the requirement of logical 
adequacy is fulfilled. 

Along with the theoretical investigations that we have carried out until now, we are designing and 
implementing a prototype experimental system [KZ91], which is composed of a number of layers (cur- 
rently two), incorporating abstraction and fusion processes. We are experimenting with this system 
on a chosen domain and examining the results of abstraction and fusion processes at each layer. This 
will allow us to formulate guidelines on the payoffs of doing abstraction vs. fusion in particular layers, 
choosing an appropriate layer for fusing data, or performing fusion dynamically in a number of layers, 
and combining/fusing the results. 

References 

[KZ91) M. M. Kokar and K. P. Zavoleas. Sensor/data fusion r;w.wch at cer: Progress report. Technical 
report, Center of Electromagnetics Research, Northeastern University, Nov. 1991. 

hf. M. Kokar and K. P. Zavoleas. A logical framework of sensor/data fusion. In Proceedings of 
the European Robotics and Intelligent Systems Conference EURISCON 1991. IFAC, 1992. 

[KZSS] 

[KZRSl] M. M. Kokar, K. P. Zavoleas, and S. A. Reveliotis. A new framework for sensor/data fu- 
sion. Technical Report CSGMMK-1-91, Center of Electromagnetics Research, Northeastern 
University, Jan. 1991. 

174 


